
Copernical Team
Air Force selects Wallaroo.AI for On-Orbit AI advancements

NASA's Lunar Trailblazer gets final payload water hunt

A Framework for Optimized, Integrated Lunar Infrastructure

Indian lunar lander splits from propulsion module in key step

Q&A: Sustainability in space travel can aid efforts here on Earth

Dr. Angelo Vermeulen is a space systems researcher at Delft University of Technology in the Netherlands, where he explores advanced concepts for interstellar exploration. Over the past decade, he has collaborated closely with the European Space Agency's (ESA) MELiSSA program, developing concepts for bioregenerative life support systems for space. In such systems, a variety of microorganisms progressively break down human waste and the resulting compounds are harnessed by plants to produce oxygen and food for the crew.
Beyond his scientific pursuits, Dr Vermeulen is also an accomplished artist and a co-founder of the SEADS (Space Ecologies Art and Design) collective. SEADS creates artworks that seamlessly integrate concepts and technologies from a diverse array of scientific disciplines, including biology, neuroscience, computer science, and astrophysics.
He is the author of a recently published Frontiers in Astronomy and Space Sciences article in which he and his co-authors describe a new model that theoretically produces all required food and oxygen during long-duration and remote space missions, removing the necessity for resupply from Earth.
NASA adds water detection instrument to Lunar Trailblazer spacecraft

Chandrayaan-3 nears landing with successful orbital adjustments

NASA's lunar trailblazer gets final payload for moon water hunt

NASA's Lunar Trailblazer is nearing completion now that its second and final cutting-edge science instrument has been added to the small spacecraft. Built by the University of Oxford in England and contributed by the UK Space Agency, the Lunar Thermal Mapper (LTM) joins the High-resolution Volatiles and Minerals Moon Mapper (HVM3), which was integrated with the spacecraft late last year. Together, the instruments will enable scientists to determine the abundance, location, and form of the moon's water.
Led by Caltech in Pasadena, California, Lunar Trailblazer has a mass of about 440 pounds (200 kilograms) and measures only 11.5 feet (3.5 meters) wide with its solar panels fully deployed.
A robot with expandable appendages could explore Martian caves and cliffs

Plenty of areas in the solar system are interesting for scientific purposes but hard to access by traditional rovers. Some of the most prominent are the caves and cliffs of Mars—where exposed strata could hold clues to whether life ever existed on the Red Planet. So far, none of the missions sent there has been able to explore those difficult-to-reach places. But a mission concept from a team at Stanford hopes to change that.
The concept, known as ReachBot, is a robot that can support itself using multiple articulated appendages to navigate terrain that would be difficult to reach using other navigational techniques. In addition to being able to traverse complex ground patterns, it could also, in theory, at least scale sheer cliff faces.
It was initially pitched as a NASA Institute for Advanced Concepts project, where it was awarded a Phase I grant back in 2021. The authors describe the idea as a fusion of two separate technologies developed for different purposes: mobile manipulation robots and deployable space structures.
Mobile manipulation robots are relatively common in space exploration.