
Copernical Team
Space colonies: How artificial photosynthesis may be key to sustained life beyond Earth

Life on Earth owes its existence to photosynthesis—a process which is 2.3 billion years old. This immensely fascinating (and still not fully understood) reaction enables plants and other organisms to harvest sunlight, water and carbon dioxide while converting them into oxygen and energy in the form of sugar.
Photosynthesis is such an integral part of Earth's functioning that we pretty much take it for granted. But as we look beyond our own planet for places to explore and settle on, it is obvious how rare and valuable the process is.
As my colleagues and I have investigated in a new paper, published in Nature Communications, recent advances in making artificial photosynthesis may well be key to surviving and thriving away from Earth.
The human need for oxygen makes space travel tricky. Fuel constraints limit the amount of oxygen we can carry with us, particularly if we want to do long-haul journeys to the moon and Mars. A one-way trip to Mars usually takes on the order of two years, meaning we can't easily send supplies of resources from Earth.
Airbus develops a system to extract oxygen and metal from lunar regolith

New technologies using material found in space are constantly popping up, sometimes from smaller companies and sometimes from larger ones. Back in 2020, one of the largest companies of them all announced a technology that could have significant implications for the future lunar exploration missions planned over the next ten years. The European aerospace giant Airbus developed the Regolith to OXYgen and Metals Conversion (ROXY) system.
ROXY creates not only oxygen, a resource vital for humans to breathe and also for rocket fuel, but also makes metals that can be used to manufacture tools, equipment, and even structures on the Moon. And it does it simply from the regolith that is present everywhere on the lunar surface.
First Mars livestream: the movie

Parker Solar Probe flies into the fast solar wind and finds its source

NASA's Parker Solar Probe (PSP) has flown close enough to the sun to detect the fine structure of the solar wind close to where it is generated at the sun's surface, revealing details that are lost as the wind exits the corona as a uniform blast of charged particles.
It's like seeing jets of water emanating from a showerhead through the blast of water hitting you in the face.
In a paper to be published in the journal Nature, a team of scientists led by Stuart D.
Nicolas Bobrinsky on space safety | ESA Masterclass

Satellites in orbit underpin our modern lives. They are used in many areas and disciplines, including space science, Earth observation, meteorology, climate research, telecommunication, navigation and human space exploration. However, as space activities have increased, a new and unexpected hazard has started to emerge: space debris.
If space debris – uncontrolled human-made objects such as spent upper stages of rockets and pieces of satellites – hits a satellite, it could cause serious damage, which can even end a mission (as has happened in the past). If debris crashes on Earth’s surface, it could potentially hit populated areas.
In this second video, Nicolas looks back on the first key
25 times Copernicus made the headlines

Twenty-five years ago, Copernicus set out to transform the way we see our planet. Now, well established as the largest environmental monitoring programme in the world, it returns a whopping 16 terabytes of high-quality data every single day. To mark a quarter-century of European success in space, we look back at a selection of 25 Copernicus highlights.
Next-Gen relay ground stations to transform Pacific's Missile-Warning System

UCF College of Medicine joins partnership to study health impacts of space travel

Benefield Anechoic Facility tests first satellite in decades

Xona Space Systems certifies Spirent's LEO SatNav constellation simulator
