
Copernical Team
New Horizons is so far away, it can measure the true darkness of the universe

Just how dark is the night sky?
If you step outside during a moonless night and look up, it probably doesn't look that dark at all. Streetlights or nearby porch lights fill the air with a background glow, particularly if they happen to be bluish-white LEDs. Light pollution in your neighborhood is likely so bad that you can only see a few bright stars. Even in somewhat rural areas, our skies are so bright that the Milky Way isn't really visible. In North America and Europe, only about a quarter of children have seen the Milky Way.
To get away from all the light pollution you need to travel to a pretty remote corner of the world. One of the most remote is the Andean desert in Chile.
Scientists propose adapting a Mars ISRU system to the changing Mars environment

Human missions to Mars will require a substantial launch vehicle to ascend from Mars to rendezvous with a waiting Earth return vehicle in Mars orbit. For an ascending crew of 6, the current best estimate of oxygen propellants required for ascent is about 30 metric tons. Producing oxygen for ascent propellants and possibly life support from the indigenous CO2 on Mars, rather than bringing oxygen to Mars from Earth, is of significant benefit.
The oxygen production is accomplished through a process known generically as in situ resource utilization (ISRU). Since the Mars Oxygen ISRU Experiment (MOXIE) Project demonstrated operation of a prototype electrolysis system for converting Martian CO2 to O2 on Mars with great success, it is now appropriate to investigate scaling up this prototype to a full-scale system.
In a research paper recently published in Space: Science & Technology, Donald Rapp and Eric Hinterman modeled the performance of a full-scale Mars in situ resource utilization (ISRU) system to produce 30 metric tons of liquid O2, operated for 14 months as the Mars environment changes diurnally and seasonally.
Artemis II crew visit spacecraft

During Artemis I the European Service Module (ESM) surpassed expectations. Now, as we set our sights on Artemis II, the European Service Module is ready to once again serve as Orion’s primary power and propulsion component and keep the spacecraft at the right temperature and on course. And this time, with real astronauts on board.
ESM-2 stands as a testament to ESA's contributions to NASA's Orion spacecraft and the Artemis programme, ensuring the crew will have the essentials – from electricity to temperature control – in the vastness of space.
Next up, ESM-2 will be connected with the crew
NASA study reveals compounding climate risks at two degrees of warming

Oldest extant plant has adapted to extremes and is threatened by climate change

NASA TechRise Student Challenge tests experiments in stratosphere

HALO investigates transport of polluted air masses over the Pacific Ocean

Deep cycling of carbon and chlorine were likely flipped in Earth's early history

SpaceX launches another batch of Starlink satellites into space

Umbra achieves Commercial SAR milestone with 16-cm resolution
