Copernical Team
China describes hypersonic test as a space vehicle trial
The Financial Times earlier reported that the test of the alleged hypersonic glider vehicle by China this summer "caught the US government by surprise" as it purportedly demonstrated the great progress achieved by Beijing in this area. China did not carry out a test of hypersonic weapons, but instead carried out a trial of a spacecraft, Chinese Foreign Ministry spokesman Zhao Lijian has st
To watch a comet form, a spacecraft could tag along for a journey toward the sun
Deep in the solar system, between Jupiter and Neptune, lurk thousands of small chunks of ice and rock. Occasionally, one of them will bump into Jupiter's orbit, get caught and flung into the inner solar system-towards the sun, and us. This is thought to be the source of many of the comets that eventually pass Earth. A new study lays out the dynamics of this little-understood system. Among
The October Council edition of ESA Impact is online
ESA Impact October Council edition
Great images and videos of climate change on view, BepiColombo flies by Mercury, Cheops gets a surprise, and more
Titan's river maps may advise Dragonfly's sedimental journey
With future space exploration in mind, a Cornell-led team of astronomers has published the final maps of Titan's liquid methane rivers and tributaries—as seen by NASA's late Cassini mission—so that may help provide context for Dragonfly's upcoming 2030s expedition.
The fluvial maps and details of their accuracy were published in the Planetary Science Journal. In addition to the maps, the work examined what could be learned by analyzing Earth's rivers by using degraded radar data—similar to what Cassini saw.
Like water on Earth, liquid methane and ethane fill Titan's lakes, rivers and streams. But understanding those channels—including their twists and branch-like turns—is key to knowing how that moon's sediment transport system works and the underlying geology.
"The channel systems are the heart of Titan's sediment transport pathways," said Alex Hayes, associate professor of astronomy in the College of Arts and Sciences.
NASA Selects Gamma-ray Telescope to Chart Milky Way Evolution
A spacecraft could use gravity to prevent a dangerous asteroid impact
The idea of avoiding asteroid impacts has featured prominently in the public's mind for decades—especially since the release of movies such as Deep Impact and Armageddon. But is using a nuclear explosion the best way to deal with potentially hazardous space rocks? Decidedly not. If given enough time, there is a much more effective (and safer) way to deal with any object on a collision course with Earth—a gravity tractor. Now, Dr. Yohannes Ketema from the University of Minnesota has developed a flight pattern that makes this simplest of all asteroid defense mechanisms that much more effective.
Gravity tractors have been around for a while. They use the gravity of an artificial body to pull an object toward it and slightly change its trajectory. Over long periods, this would pull the hazardous object out of the current trajectory into a safer one. It also has the advantage of not requiring any direct impact or explosion on the surface of the asteroid itself.
Death in space: Here's what would happen to our bodies
As space travel for recreational purposes is becoming a very real possibility, there could come a time when we are traveling to other planets for holidays, or perhaps even to live. Commercial space company Blue Origin has already started sending paying customers on sub-orbital flights. And Elon Musk hopes to start a base on Mars with his firm SpaceX.
This means we need to start thinking about what it will be like to live in space—but also what will happen if someone dies there.
After death here on Earth, the human body progresses through a number of stages of decomposition. These were described as early as 1247 in Song Ci's The Washing Away of Wrongs, essentially the first forensic science handbook.
First the blood stops flowing and begins to pool as a result of gravity, a process known as livor mortis. Then the body cools to algor mortis, and the muscles stiffen due to uncontrolled build-up of calcium in the muscle fibers. This is the state of rigor mortis.
Three hours to save Integral
On 22 September, around midday, ESA’s Integral spacecraft went into emergency Safe Mode. One of the spacecraft’s three active ‘reaction wheels’ had turned off without warning and stopped spinning, causing a ripple effect that meant the satellite itself began to rotate.
How the Sun affects asteroids in our neighborhood
Asteroids embody the story of our solar system's beginning. Jupiter's Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA's Lucy mission will visit eight asteroids—including seven Trojans—to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about three and a half years to reach its first destination. What might Lucy find?
Like all the planets, asteroids exist in the heliosphere, the vast bubble of space defined by the reaches of our Sun's wind. Directly and indirectly, the Sun affects many aspects of existence within this pocket of the universe. Here are a few of the ways the Sun influences asteroids like the Trojans in our solar system.
Place in Space
The Sun makes up 99.8% of the solar system's mass and exerts a strong gravitational force as a result.
Is Planetary Defense PI in the Sky?
In February of 2013, skywatchers around the world turned their attention toward asteroid 2012 DA14, a cosmic rock about 150 feet (50 meters) in diameter that was going to fly closer to Earth than the spacecraft that bring us satellite TV. Little did they realize as they prepared for the once-in-several-decades event that another bit of celestial debris was hurtling toward Earth, with a mor