
Copernical Team
Juno maps water ice across northern Ganymede

Jupiter's moon Ganymede is the largest planetary satellite in the solar system. It's also one of the most intriguing: Ganymede is the only moon with its own magnetic field, it is the most differentiated of all moons, and it likely possesses a subsurface ocean of liquid water. It was studied by the early Jupiter flybys made by the Pioneer and Voyager spacecraft, but our understanding today rests largely on observations made by NASA's Galileo orbiter from 1995 to 2003.
Mura et al. now report some of the first in situ observations of Ganymede since the end of the Galileo mission. They used the Jovian Infrared Auroral Mapper (JIRAM) on board NASA's Juno spacecraft to take images and spectra of the moon's north polar region.
Oldest carbonates in the solar system

A meteorite that fell in northern Germany in 2019 contains carbonates which are among the oldest in the solar system; it also evidences the earliest presence of liquid water on a minor planet. The high-resolution Ion Probe—a research instrument at the Institute of Earth Sciences at Heidelberg University—provided the measurements. The investigation by the Cosmochemistry Research Group led by Prof. Dr. Mario Trieloff was part of a consortium study coordinated by the University of Münster with participating scientists from Europe, Australia and the U.S.
Rocks show Mars once felt like Iceland

Once upon a time, seasons in Gale Crater probably felt something like those in Iceland. But nobody was there to bundle up more than 3 billion years ago.
The ancient Martian crater is the focus of a study by Rice University scientists comparing data from the Curiosity rover to places on Earth where similar geologic formations have experienced weathering in different climates.
3-D printing to pave the way for moon colonization

A research team from the Skoltech Center for Design, Manufacturing and Materials (CDMM) comprising 2nd year Ph.D. student Maxim Isachenkov, Senior Research Scientist Svyatoslav Chugunov, Professor Iskander Akhatov, and Professor Igor Shishkovsky has prepared an extensive review on the use of Additive Manufacturing (AM) technologies (also known as 3-D-printing) in crewed lunar exploration. Their paper published in the journal Acta Astronautica contains a comprehensive description of the geological composition of the lunar surface and the properties of lunar soil (lunar regolith) and its simulants, detailing their mineralogy, morphology, and chemical composition, in the light of their future use as feedstock for 3-D-printing on the moon surface.
The authors evaluated different 3-D-printing techniques presented in literature in terms of their suitability for in-situ manufacturing and maintainability, with focus on the adaptation of AM methods to low gravity, limited energy consumption, dimension and weight constraints of AM components delivered to the moon, scalability of AM technologies, low-gravity performance of 3-D-printing methods, and autonomy of AM applications.
Astronomers dissect the anatomy of planetary nebulae using Hubble images

Autonomous driving on intelligent road at Europe's edge

Lunar Surface Trash or Treasure?

Astroscale's ELSA-d debris buster ready for a March launch

Search for axions from nearby star Betelgeuse comes up empty

SpaceX launches first Starlink satellite mission of 2021
