
Copernical Team
Solar system formation in two steps

A Hot Spot on Jupiter

GEM 63XL rocket motors will help launch ULA's Vulcan Centaur rocket

Satellite-powered app to spot loneliness in hotspots in UK cities

Six things to know about NASA's Mars helicopter on its way to Mars

Framework agreement facilitates future slot bookings by ESA

NASA may limit its presence in Russia over shrinking cooperation on ISS

Nanosatellite thruster emits pure ions

Astronomers estimate Titan's largest sea is 1,000-feet deep

Far below the gaseous atmospheric shroud on Saturn's largest moon, Titan, lies Kraken Mare, a sea of liquid methane. Cornell University astronomers have estimated that sea to be at least 1,000-feet deep near its center—enough room for a potential robotic submarine to explore.
After sifting through data from one of the final Titan flybys of the Cassini mission, the researchers detailed their findings in "The Bathymetry of Moray Sinus at Titan's Kraken Mare," which published in the Journal of Geophysical Research.
"The depth and composition of each of Titan's seas had already been measured, except for Titan's largest sea, Kraken Mare—which not only has a great name, but also contains about 80% of the moon's surface liquids," said lead author Valerio Poggiali, research associate at the Cornell Center for Astrophysics and Planetary Science (CCAPS).
NASA mission to test technology for satellite swarms

A NASA mission slated for launch on Friday will place three tiny satellites into low-Earth orbit, where they will demonstrate how satellites might track and communicate with each other, setting the stage for swarms of thousands of small satellites that can work cooperatively and autonomously.
Zac Manchester, an assistant professor in Carnegie Mellon University's Robotics Institute and the mission's principal investigator, said small satellites have grown in popularity over the last 10 years, as some companies already are launching hundreds into orbit to perform tasks such as Earth imaging and weather forecasting.
These satellites now are individually controlled from the ground. As swarms grow bigger and more sophisticated, Manchester noted, they will need to respond to commands almost as a single entity.