...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

Copernical Team

Copernical Team

Sunday, 11 March 2012 17:51

GIOVE-A2

Write a comment

GIOVE, or Galileo In-Orbit Validation Element, is the name for each satellite in a series being built for the European Space Agency (ESA) to test technology in orbit for the Galileo positioning system.

Giove is the Italian word for "Jupiter". The name was chosen as a tribute to Galileo Galilei, who discovered the first four natural satellites of Jupiter, and later discovered that they could be used as a universal clock to obtain the longitude of a point on the Earth's surface.

The GIOVE satellites are exploited by the GIOVE Mission (GIOVE-M) segment in the frame of the risk mitigation for the In Orbit Validation (IOV) of the Galileo positioning system.

 

GIOVE-A2

With the delays of GIOVE-B, the European Space Agency again contracted with SSTL for a second satellite, to ensure that the Galileo programme continues without any interruptions that could lead to loss of frequency allocations. Construction of GIOVE-A2 was terminated due to the successful launch and in-orbit operation of GIOVE-B.

Sunday, 11 March 2012 17:47

GIOVE-B

Write a comment

GIOVE, or Galileo In-Orbit Validation Element, is the name for each satellite in a series being built for the European Space Agency (ESA) to test technology in orbit for the Galileo positioning system.

Giove is the Italian word for "Jupiter". The name was chosen as a tribute to Galileo Galilei, who discovered the first four natural satellites of Jupiter, and later discovered that they could be used as a universal clock to obtain the longitude of a point on the Earth's surface.

The GIOVE satellites are exploited by the GIOVE Mission (GIOVE-M) segment in the frame of the risk mitigation for the In Orbit Validation (IOV) of the Galileo positioning system.

 

GIOVE-B (previously called GSTB-V2/B), has a similar mission, but has greatly improved signal generation hardware.

It was originally built by satellite consortium European Satellite Navigation Industries, but following re-organization of the project in 2007, the satellite prime contractor responsibility was passed to Astrium.

GIOVE-B also has MEO environment characterization objectives, as well as signal-in-space and receiver experimentation objectives. GIOVE-B carries three atomic clocks: two rubidium standards and the first space-qualified passive hydrogen maser.

Launched on 27 April 2008

The launch was delayed due to various technical problems, and took place on 27 April 2008 at 04:16 Baikonur time (22:16 UTC Saturday) aboard a Soyuz-FG/Fregat rocket provided by Starsem. The Fregat stage was ignited three times to place the satellite into orbit. Giove-B reached its projected orbit after 02:00 UTC and successfully deployed its solar panels.
Sunday, 11 March 2012 17:41

GIOVE-A

Write a comment

GIOVE, or Galileo In-Orbit Validation Element, is the name for each satellite in a series being built for the European Space Agency (ESA) to test technology in orbit for the Galileo positioning system.

Giove is the Italian word for "Jupiter". The name was chosen as a tribute to Galileo Galilei, who discovered the first four natural satellites of Jupiter, and later discovered that they could be used as a universal clock to obtain the longitude of a point on the Earth's surface.

The GIOVE satellites are exploited by the GIOVE Mission (GIOVE-M) segment in the frame of the risk mitigation for the In Orbit Validation (IOV) of the Galileo positioning system.

 

GIOVE-A

Previously known as GSTB-V2/A, this satellite was constructed by Surrey Satellite Technology Ltd (SSTL).

Its mission has the main goal of claiming the frequencies allocated to Galileo by the ITU. It has two independently-developed Galileo signal generation chains and also tests the design of two on-board rubidium atomic clocks and the orbital characteristics of the intermediate circular orbit for future satellites.

GIOVE-A is the first spacecraft whose design is based upon SSTL's new Geostationary Minisatellite Platform (GMP) satellite bus, intended for geostationary orbit. GIOVE-A is also SSTL's first satellite outside low Earth orbit, operating in medium Earth orbit), and is SSTL's first satellite to use deployable sun-tracking solar arrays. Previous SSTL satellites use body-mounted solar arrays, which generate less power per unit area as they do not face the sun directly.

Launched on 28 December 2005

It was launched at 05:19 UTC on December 28, 2005 on a Soyuz-FG/Fregat from the Baikonur Cosmodrome in Kazakhstan.

It began communicating as planned at 09:01 UTC while circling the Earth at a height of 23,222 km. The satellite successfully transmitted its first navigation signals at 17:25 GMT on 12 January 2006. These signals were received at Chilbolton Observatory in Hampshire, UK and the ESA Station at Redu in Belgium. Teams from SSTL and ESA have measured the signal generated by GIOVE-A to ensure it meets the frequency-filing allocation and reservation requirements for the International Telecommunication Union (ITU), a process that was required to be complete by June 2006.

The GIOVE-A signal in space is fully representative of the Galileo signal from the point of view of frequencies and modulations, chip rates, and data rates. However, GIOVE-A can only transmit at two frequency bands at a time (i.e., L1+E5 or L1+E6).

GIOVE-A codes are different from Galileo codes. The GIOVE-A navigation message is not representative from the structure and contents viewpoint (demonstration only purpose). The generation of pseudorange measurements and detailed analysis of the tracking noise and multipath performance of GIOVE-A ranging signals have been performed with the use of the GETR (Galileo Experimental Test Receiver) designed by Septentrio.

There has been some public controversy about the open source nature of some of the Pseudo-Random Noise (PRN) codes. In the early part of 2006, researchers at Cornell monitored the GIOVE-A signal and extracted the PRN codes. The methods used and the codes which were found were published in the June 2006 issue of GPS World. ESA has now made the codes public.

Sunday, 11 March 2012 17:36

CryoSat-2

Write a comment

CryoSat is an ESA programme which will monitor variations in the extent and thickness of polar ice through use of a satellite in low Earth orbit. The information provided about the behaviour of coastal glaciers that drain thinning ice sheets will be key to better predictions of future sea-level rise.

The CryoSat-1 spacecraft was lost in a launch failure in 2005, however the programme was resumed with the successful launch of a replacement, CryoSat-2, launched on 8 April 2010.

CryoSat-2 is a European Space Agency environmental research satellite which was launched in April 2010. It provides scientists with data about the polar ice caps and tracks changes in the thickness of the ice with a resolution of about 12 inches (1.3 cm). This information is useful for monitoring climate change. Cryosat 2 was built as a replacement for CryoSat-1, whose Rokot carrier rocket was unable to achieve orbit. ESA built a replacement, with software upgrades and greater battery capacity, which carries an interferometric radar range-finder with twin antennas which measures the height difference between floating ice and open water. CryoSat-2 is operated as part of the CryoSat programme to study the Earth's polar ice caps, which is itself part of the Living Planet programme. The CryoSat-2 spacecraft was constructed by EADS Astrium, and was launched by ISC Kosmotras, using a Dnepr-1 carrier rocket, on 8 April 2010. On 22 October 2010, CryoSat-2 was declared operational following six months of on-orbit testing.

CryoSat-2 is operated from the European Space Operations Centre (ESOC) in Darmstadt, Germany.

Sunday, 11 March 2012 17:31

CryoSat-1

Write a comment

CryoSat-1, also known as just CryoSat, was a European Space Agency satellite which was lost in a launch failure in 2005. It was to have been operated as part of the CryoSat programme to study the Earth's polar ice caps.

The CryoSat spacecraft was intended to operate in low Earth orbit for three years. It had a mass of 750 kilograms (1,700 lb) Its primary instrument, SIRAL, was to have used radar to determine and monitor the spacecraft's altitude in order to measure the elevation of the ice, and for radar imaging of the ice caps. A second instrument, DORIS, was to have been used to calculate precisely the spacecraft's orbit. It also carried an array of retroreflectors which would have allowed measurements to be made from the ground to verify the orbital data provided by DORIS.

CryoSat was launched from Site 133/3 at the Plesetsk Cosmodrome at 15:02:00 UTC on 8 October 2005. The launch was conducted by Eurockot, using a Rokot carrier rocket with a Briz-KM upper stage. The command to shut down the rocket's second stage engine was missing from the flight control system, and consequently the stage burned to depletion. This prevented the second stage from separating from the Briz-KM, and as a result the rocket was unable to achieve orbit. It reentered over the Arctic Ocean, north of Greenland. A replacement satellite, CryoSat-2, was successfully launched in 2010.

Sunday, 11 March 2012 17:21

Envisat

Write a comment

Envisat  ("Environmental Satellite") is an Earth observation satellite. Its objective is to service the continuity of European Remote-Sensing Satellite missions, providing additional observational parameters to improve environmental studies.

In working towards the global and regional objectives of the mission, numerous scientific disciplines use the data acquired from the different sensors on the satellite, to study such things as atmospheric chemistry, ozone depletion, biological oceanography, ocean temperature and colour, wind waves, hydrology (humidity, floods), agriculture and arboriculture, natural hazards, digital elevation modelling (using interferometry), monitoring of maritime traffic, atmospheric dispersion modelling (pollution), cartographyand study of snow and ice.

It was launched on 1 March 2002 aboard an Ariane 5 from the Guyana Space Centre in Kourou, French Guyana into a Sun synchronous polar orbit at an altitude of 790 km (490 mi) (± 10 km (6.2 mi)). It orbits the Earth in about 101 minutes with a repeat cycle of 35 days.

Envisat is the largest earth observation satellite put into space (as of late 2006), being 26 m (85 ft) × 10 m (33 ft) × 5 m (16 ft) and having a mass of 8.5 t (8.4 long tons; 9.4 short tons).

The Envisat mission ended on 08 April 2012, following the unexpected loss of contact with the satellite.

Envisat data collectively provide a wealth of information on the workings of the Earth system, including insights into factors contributing to climate change.

Friday, 02 March 2012 16:30

COROT

Write a comment

COROT (French: COnvection ROtation et Transits planétaires; English: COnvection ROtation and planetary Transits) is a space mission led by the French Space Agency (CNES) in conjunction with the European Space Agency (ESA) and other international partners.

The mission's two objectives are to search for extrasolar planets with short orbital periods, particularly those of large terrestrial size, and to perform asteroseismology by measuringsolar-like oscillations in stars. It was launched at 14:28:00 UTC on 27 December 2006, atop a Soyuz 2.1b carrier rocket, reporting first light on 18 January 2007. Subsequently, the probe started to collect science data on 2 February 2007. COROT is the first spacecraft dedicated to the detection of transiting extrasolar planets, opening the way for more advanced probes such as Kepler and possibly TESS and PLATO. It detected its first extrasolar planet, COROT-1b, in May 2007, just 3 months after the start of the observations. Mission flight operations were originally scheduled to end 2.5 years from launch but operations were extended to 2013.

 

 

 

Friday, 02 March 2012 16:03

Cluster II (spacecraft)

Write a comment

Cluster II is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of an entire solar cycle.

The mission is composed of four identical spacecraft flying in a tetrahedral formation. A replacement for the original Cluster spacecraft which were lost in a launch failure in 1996, the four Cluster II spacecraft were successfully launched in pairs in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur. In February 2011, Cluster II celebrated 10 years of successful scientific operations in space.

The mission has been extended until December 2012.

China National Space Administration/ESA Double Star mission operated alongside Cluster II from 2003 to 2007.

The four identical Cluster II satellites study the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission is able to collect three-dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae.

The satellites are named Rumba, Salsa, Samba and Tango but are more commonly called Cluster 1, Cluster 2, Cluster 3 and Cluster 4 or even C1, C2, C3 and C4.

The spacecraft are cylindrical (290 x 130 cm, see online 3D model) and are spin-stabilized at 15 rotations per minute. After launch, their solar cells provided 224 watts power for instruments and communications. The four spacecraft maneuver into various tetrahedral formations to study the magnetospheric structure and boundaries. The inter-spacecraft distances can be varied from around 17 to 10,000 kilometers (km). The propellant for the maneuvers makes up approximately half of the spacecraft's launch weight.

The highly elliptical orbits of the spacecraft reach a perigee of around 4 RE (Earth radii, where 1 RE = 6371 km) and an apogee of 19.6 RE. Each orbit takes approximately 57 hours to complete. The European Space Operations Centre (ESOC) acquires telemetry and distributes to the online data centers the science data from the spacecraft.

Friday, 02 March 2012 15:50

Cluster I (spacecraft)

Write a comment

Cluster I was a constellation of four European Space Agency spacecraft which were launched on the maiden flight of the Ariane 5 rocket, Flight 501, and subsequently lost when that rocket failed to achieve orbit.

The launch, which took place on June 4, 1996, ended in failure due to an error in the software design caused by inadequate protection from integer overflow. This resulted in the rocket veering off its flight path 37 seconds after launch, beginning to disintegrate under high aerodynamic forces, and finally self-destructing by its automated flight termination system.

Cluster consisted of four 1,200 kilograms (2,600 lb) cylindrical, spin-stabilised spacecraft, powered by 224 watt solar cells. The spacecraft were to have flown in a tetrahedral formation, and were intended to conduct research into the Earth's magnetosphere. The satellites would have been placed into highly eliptical orbits; 17,200 by 120,600 kilometres (10,700 by 74,900 mi), inclined at 90 degrees to the equator.

Following the failure of Cluster I, four replacement Cluster II satellites were built. 

Friday, 02 March 2012 15:42

THEMIS (ARTEMIS)

Write a comment

The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission was originally a constellation of five NASA satellites to study energy releases from Earth's magnetosphere known as substorms, magnetic phenomena that intensify auroras near Earth's poles. The name of the mission is an acronym alluding to the Titan, Themis.

Now three of the original satellites remain in the magnetosphere, while two have been moved into orbit near the Moon. Those two have been renamed ARTEMIS for Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with the Sun, but are also called ARTEMIS P1 (THEMIS B) and ARTEMIS P2 (THEMIS C).

The THEMIS satellites were launched February 17, 2007 from Cape Canaveral Air Force Station Space Launch Complex 17 aboard a Delta II rocket. Each satellite carries identical instrumentation, including a fluxgate magnetometer (FGM), an electrostatic analyzer (ESA), a solid state telescope (SST), a search-coil magnetometer (SCM) and an electric field instrument (EFI). Each has a mass of 126 kg, including 49 kg of fuel.

Launch date 2007-02-17 23:01:00 UTC

Page 2234 of 2239