
Copernical Team
Series Futuristic Space Themed Centers

Dust grains older than our sun found in Asteroid Ryugu samples

Sols 3562-3563: Adventures Over Sand

Virgin Orbit earns AS9100 Certification

Rocket Lab to launch 150th satellite with upcoming Synspective SAR launch

Russian spacewalk cut short due to issue with suit

Voyager logs 45 years in space as NASA's longest mission to date

NASA's new rocket on launchpad for trip to Moon

Test chamber for NASA's new cosmic mapmaker makes dramatic entrance

After three years of design and construction, a monthlong boat ride across the Pacific Ocean, and a lift from a 30-ton crane, the customized test chamber for NASA's upcoming SPHEREx mission has finally reached its destination at Caltech's Cahill Center for Astronomy and Astrophysics in Pasadena.
Set to launch no earlier than June 2024, SPHEREx (short for Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) will make a unique map of the cosmos that will contain hundreds of millions of objects, including stars, galaxies, star-forming regions, and other cosmic wonders.
Facilitating the development of LEO mega constellations

The rapid development of Low Earth Orbit (LEO) mega constellations has significantly contributed to several aspects of human scientific progress, such as communication, navigation, and remote sensing. However, unrestrained deployment of constellations has also strained orbital resources and increased spacecraft congestion in LEO, which seriously affects the safety of in-orbit operations of many space assets.
For the long-term and sustainable development of space activities in LEO regions, space environment stability must be maintained using more rational surveillance and governance mechanisms. In a review paper recently published in Space: Science & Technology, Jingrui Zhang from School of Aerospace Engineering, Beijing Institute of Technology, analyzed the research gap and facilitated the development of LEO mega constellations.
First of all, the author reviewed the current developments of typical LEO mega constellations, including Starlink, OneWeb, Iridium Next, Globalstar, and Flock. Taking SpaceX's Starlink as an example, it aims to build a LEO constellation containing 42,000 satellites to achieve global coverage, high-speed, large-capacity, and low-latency space-based global communication system. Starlink has shown excellent performance in related fields, such as international aviation and ocean transportation. Moreover, Starlink can be constructed as a powerful command and communication network and has already been an important symbol of the weaponization of outer space in the United States.