...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Webb finds primeval star-forming galaxy that is lightweight

Webb finds primeval star-forming galaxy that is lightweight

Written by  Wednesday, 11 December 2024 15:00
Write a comment
Galaxy cluster MACS J1423 (NIRCam image)

For the first time, the NASA/ESA/CSA James Webb Space Telescope has detected and ‘weighed’ a galaxy, in the early Universe, that has a mass that is similar to what our Milky Way galaxy’s mass might have been at the same stage of development. Found at around 600 million years after the Big Bang, this lightweight galaxy, nicknamed the Firefly Sparkle, is gleaming with star clusters – 10 in total – that researchers examined in great detail. Other galaxies Webb has detected at this period in the history of the Universe are significantly more massive.

‘Glowing’ companions

Researchers can’t predict how this disorganised galaxy will build up and take shape over billions of years, but there are two galaxies that the team confirmed are 'hanging out' close to it and they may influence how Firefly Sparkle builds mass over billions of years.

Firefly Sparkle is only 6500 light-years away from its first companion, and its second companion is separated by 42 000 light-years. For context, the fully formed Milky Way measures about 100 000 light-years across – all three would fit inside it. Not only are its companions very close, the researchers also think that they are orbiting one another.

Each time one galaxy passes another, gas condenses and cools, allowing new stars to form in clumps. “It has long been predicted that galaxies in the early Universe form through successive interactions and mergers with other tinier galaxies,” said Yoshihisa Asada, a co-author and doctoral student at Kyoto University in Japan. “We might be witnessing this process in action.”

“This is just the first of many such galaxies JWST will discover, as we are only starting to use these cosmic microscopes”, added team member Maruša Bradač of the University of Ljubljana in Slovenia. “Just like microscopes let us see pollen grains from plants, the incredible resolution of Webb and the magnifying power of gravitational lensing let us see the small pieces inside galaxies. Our team is now analysing all early galaxies, and the results are all pointing in the same direction: we have yet to learn much more about how those early galaxies formed.”

The team’s research relied on data from Webb’s CAnadian NIRISS Unbiased Cluster Survey, which include near-infrared images from NIRCam (Near-InfraRed Camera) and spectra from the microshutter array aboard NIRSpec (Near-Infrared Spectrograph). The CANUCS data intentionally covered a field that the NASA/ESA Hubble Space Telescope imaged as part of its Cluster Lensing And Supernova survey with Hubble programme.

This work is published in the journal Nature.


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...