The research article, titled "Charging Properties and Particle Dynamics of Chang'e-5 Lunar Sample in an External Electric Field," delves into the challenges of in-situ utilization of lunar regolith resources. The study explores the manipulation of lunar particles through the application of an external electric field, a method that shows promise for space particle control. This control is crucial for various space applications, including dust elimination, raw material transport, and mineral enrichment.
The experiments were conducted under high-vacuum conditions, simulating the lunar environment. The researchers used lunar regolith samples from the Chang'e-5 mission and exposed them to an electric field produced by two parallel brass electrodes. The study observed the charging process, particle dynamics, and the impact of these charged particles on aerospace materials.
The results revealed significant differences in the charging process and electrostatic projection of lunar regolith particles under high-vacuum conditions compared to atmospheric conditions. The particles, with diameters ranging from 27.7 to 139.0 micrometers, were found to be more susceptible to negative charging in an external electric field. The charge obtained by the lunar samples and the charge-to-mass ratio were measured, providing valuable data for future lunar engineering solutions.
The study also observed significant damage on the target impact surfaces, indicating the potential hazards lunar regolith particles pose to aerospace materials. This insight is critical for developing protective measures for spacecraft and lunar habitats.
Contributing to future lunar missions
The research contributes to a deeper understanding of the fundamental principles behind lunar regolith shielding and utilization. It provides a foundation for developing new in-situ lunar regolith utilization techniques, which are essential for deep space exploration and the construction of lunar bases.
The comprehensive study of the induction charging properties of Chang'e-5 lunar regolith samples and their dynamics under an external electric field has filled a gap in experimental data in this scientific field. The findings not only advance our knowledge of lunar particle behavior but also inspire innovative approaches to lunar resource management, paving the way for sustainable and effective lunar exploration.
The paper was authored by Junping Gu, Xiaoyu Qian, Yiwei Liu, Qinggong Wang, Yiyang Zhang, Xuan Ruan, Xiangjin Deng, Yaowen Lu, Jian Song, Hui Zhang, Yunning Dong, Mengmeng Wei, Wei Yao, Shuiqing Li, Weihua Wang, Zhigang Zou, Mengfei Yang.
More information: Junping Gu et al, Charging Properties and Particle Dynamics of Chang'e-5 Lunar Sample in an External Electric Field, Engineering (2024). DOI: 10.1016/j.eng.2024.08.003
Provided by Engineering