Not quite as predicted
Epsilon Indi Ab is the twelfth closest exoplanet to Earth known to date and the closest planet more massive than Jupiter. The science team chose to study Eps Ind A because the system showed hints of a possible planetary body using a technique called radial velocity, which measures the back-and-forth wobbles of the host star along our line of sight.
“While we expected to image a planet in this system, because there were radial velocity indications of its presence, the planet we found isn't what we had predicted,” shared Elisabeth.“
It’s about twice as massive, a little farther from its star, and has a different orbit than we expected. The cause of this discrepancy remains an open question. The atmosphere of the planet also appears to be a little different than the model predictions. So far we only have a few photometric measurements of the atmosphere, meaning that it is hard to draw conclusions, but the planet is fainter than expected at shorter wavelengths.”
The team believes this may mean there is significant methane, carbon monoxide, and carbon dioxide in the planet’s atmosphere that are absorbing the shorter wavelengths of light. It might also suggest a very cloudy atmosphere.
The direct imaging of exoplanets is particularly valuable for characterisation. Scientists can directly collect light from the observed planet and compare its brightness at different wavelengths. So far, the science team has only detected Epsilon Indi Ab at a few wavelengths, but they hope to revisit the planet with Webb to conduct both photometric [2] and spectroscopic observations in the future. They also hope to detect other similar planets with Webb to find possible trends about their atmospheres and how these objects form.
These results were taken with Webb’s Cycle 1 GO programme #2243 and have been published in Nature.