...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • New Evidence Suggests Dark Matter Influence Extends Further Than Thought

New Evidence Suggests Dark Matter Influence Extends Further Than Thought

Written by  Thursday, 20 June 2024 23:09
Write a comment
Los Angeles CA (SPX) Jun 21, 2024
Scientists at Case Western Reserve University have discovered new evidence that could reshape our understanding of the cosmos. Tobias Mistele, a post-doctoral scholar in the Department of Astronomy at Case Western Reserve's College of Arts and Sciences, used "gravitational lensing" to study dark matter. He found that the rotation curves of galaxies remain flat for millions of light years.
New Evidence Suggests Dark Matter Influence Extends Further Than Thought
by Clarence Oxford
Los Angeles CA (SPX) Jun 21, 2024

Scientists at Case Western Reserve University have discovered new evidence that could reshape our understanding of the cosmos.

Tobias Mistele, a post-doctoral scholar in the Department of Astronomy at Case Western Reserve's College of Arts and Sciences, used "gravitational lensing" to study dark matter. He found that the rotation curves of galaxies remain flat for millions of light years.

Scientists have previously believed that the rotation curves of galaxies must decline the farther out you peer into space.

Traditionally, the behavior of stars within galaxies has puzzled astronomers. According to Newtonian gravity, stars on the outer edges should be slower due to diminished gravitational pull. This was not observed, leading to the inference of dark matter. But even dark matter halos should come to an end, so rotation curves should not remain flat indefinitely. Mistele's analysis defies this expectation, providing a startling revelation: the influence of what we call dark matter extends far beyond previous estimates, stretching at least a million light-years from the galactic center.

"This finding challenges existing models," he said, "suggesting there exist either vastly extended dark matter halos or that we need to fundamentally reevaluate our understanding of gravitational theory."

Stacy McGaugh, professor and director of the Department of Astronomy in the College of Arts and Sciences, said Mistele's findings, slated for publication in the Astrophysical Journal Letters, push traditional boundaries.

"The implications of this discovery are profound," McGaugh said. "It not only could redefine our understanding of dark matter, but also beckons us to explore alternative theories of gravity, challenging the very fabric of modern astrophysics."

The primary technique Mistele used in his research, gravitational lensing, is a phenomenon predicted by Einstein's theory of general relativity. Essentially, it occurs when a massive object, like a galaxy cluster or even a single massive star, bends the path of light coming from a distant source. This bending of light happens because the mass of the object warps the fabric of spacetime around it. This bending of light by galaxies persists over much larger scales than expected.

As part of the research, Mistele plotted out what's called Tully-Fisher relation on a chart to highlight the empirical relationship between the visible mass of a galaxy and its rotation speed.

"We knew this relationship existed," Mistele said. "But it wasn't obvious that the relationship would hold the farther you go out. How far does this behavior persist? That's the question, because it can't persist forever."

Mistele said his discovery underscores the necessity for further exploration and collaboration within the scientific community-and the possible analysis of other data.

McGaugh noted the Herculean-yet, so far, unsuccessful-efforts in the international particle physics community to detect and identify dark matter particles.

"Either dark matter halos are much bigger than we expected, or the whole paradigm is wrong," McGaugh said. "The theory that predicted this behavior in advance is the modified gravity theory MOND hypothesized by Moti Milgrom as an alternative to dark matter in 1983. So, the obvious and inevitably controversial interpretation of this result is that dark matter is a chimera; perhaps the evidence for it is pointing to some new theory of gravity beyond what Einstein taught us."

Related Links
Department of Astronomy at Case Western
Stellar Chemistry, The Universe And All Within It


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...