...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Webb identifies tiniest free-floating brown dwarf

Webb identifies tiniest free-floating brown dwarf

Written by  Wednesday, 13 December 2023 14:00
Write a comment

Discovery helps answer the question: How small can you go when forming stars?
Brown dwarfs are sometimes called failed stars, since they form like stars through gravitational collapse, but never gain enough mass to ignite nuclear fusion. The smallest brown dwarfs can overlap in mass with giant planets. In a quest to find the smallest brown dwarf, astronomers using the NASA/ESA/CSA James Webb Space Telescope have found the new record-holder: an object weighing just three to four times the mass of Jupiter.

Star Cluster IC 348 (NIRCam image annotated)
Star Cluster IC 348 (NIRCam image annotated)

Webb’s infrared sensitivity was crucial, allowing the team to detect fainter objects than ground-based telescopes. In addition, Webb’s sharp vision enabled them to determine which red objects were pinpoint brown dwarfs and which were blobby background galaxies.

This winnowing process led to three intriguing targets weighing three to eight Jupiter masses, with surface temperatures ranging from 830 to 1500 degrees Celsius. The smallest of these weighs just three to four times Jupiter, according to computer models.

Explaining how such a small brown dwarf could form is theoretically challenging. A heavy and dense cloud of gas has plenty of gravity to collapse and form a star. However, because of its weaker gravity, it should be more difficult for a small cloud to collapse to form a brown dwarf, and that is especially true for brown dwarfs with the masses of giant planets.

“It’s pretty easy for current models to make giant planets in a disc around a star,” said Catarina Alves de Oliveira of ESA, principal investigator on the observing program. “But in this cluster, it would be unlikely that this object formed in a disc, instead forming like a star, and three Jupiter masses is 300 times smaller than our Sun. So we have to ask, how does the star formation process operate at such very, very small masses?”

In addition to providing clues about the star formation process, tiny brown dwarfs also can help astronomers better understand exoplanets. The least massive brown dwarfs overlap with the largest exoplanets; therefore, they would be expected to have some similar properties. However, a free-floating brown dwarf is easier to study than a giant exoplanet since the latter is hidden within the glare of its host star.

Two of the brown dwarfs identified in this survey show the spectral signature of an unidentified hydrocarbon, a molecule containing both hydrogen and carbon atoms. The same infrared signature was detected by NASA’s Cassini mission in the atmospheres of Saturn and its moon Titan. It has also been seen in the interstellar medium, the gas between stars.

“This is the first time we’ve detected this molecule in the atmosphere of an object outside our Solar System,” explained Catarina. “Models for brown dwarf atmospheres don’t predict its existence. We’re looking at objects with younger ages and lower masses than we ever have before, and we’re seeing something new and unexpected.”

Since the objects are well within the mass range of giant planets, it raises the question of whether they are indeed brown dwarfs, or in fact rogue planets that were ejected from planetary systems. While the team can’t rule out the latter, they argue that they are far more likely to be brown dwarfs than an ejected planets.


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...