...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Golden rules for building atomic blocks

Golden rules for building atomic blocks

Written by  Wednesday, 06 September 2023 09:40
Write a comment
Singapore (SPX) Aug 30, 2023
National University of Singapore (NUS) physicists have developed a technique to precisely control the alignment of supermoire lattices by using a set of golden rules, paving the way for the advancement of next generation moire quantum matter. Moire patterns are formed when two identical periodic structures are overlaid with a relative twist angle between them or two different periodic stru
ADVERTISEMENT
Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas
Golden rules for building atomic blocks
by Staff Writers
Singapore (SPX) Aug 30, 2023

National University of Singapore (NUS) physicists have developed a technique to precisely control the alignment of supermoire lattices by using a set of golden rules, paving the way for the advancement of next generation moire quantum matter.

Moire patterns are formed when two identical periodic structures are overlaid with a relative twist angle between them or two different periodic structures but overlaid with or without twist angle. The twist angle is the angle between the crystallographic orientations of the two structures. For example, when graphene and hexagonal boron nitride (hBN) which are layered materials are overlaid on each other, the atoms in the two structures do not line up perfectly, creating a pattern of interference fringes, called a moire pattern.

This results in an electronic reconstruction. The moire pattern in graphene and hBN has been used to create new structures with exotic properties, such as topological currents and Hofstadter butterfly states. When two moire patterns are stacked together, a new structure called supermoire lattice is created. Compared with the traditional single moire materials, this supermoire lattice expands the range of tunable material properties allowing for potential use in a much larger variety of applications.

A research team led by Professor Ariando from the NUS Department of Physics developed a technique and successfully realised the controlled alignment of the hBN/graphene/hBN supermoire lattice. This technique allows for the precise arrangement of two moire patterns, one on top of the other. Meanwhile, the researchers also formulated the "Golden Rule of Three" to guide the use of their technique for creating supermoire lattices.

The findings were published in the journal Nature Communications.

There are three main challenges in creating a graphene supermoire' lattice. First, the traditional optical alignment strongly depends on the straight edges of graphene, but it is time-consuming and labour-intensive to find a suitable graphene flake; Second, even if the straight-edged graphene sample is used, there is a low probability of 1/8 to obtain a double-aligned supermoire lattice, due to the uncertainty of its edge chirality and lattice symmetry. Third, although the edge chirality and lattice symmetry can be identified, the alignment errors are often found to be large (greater than 0.5 degrees), as it is physically challenging to align two different lattice materials.

Dr Junxiong Hu, the lead author for the research paper, said, "Our technique helps to solve a real-life problem. Many researchers have told me that they usually take almost one week to make a sample. With our technique, they can not only greatly shorten the fabrication time, but also greatly improve the accuracy of the sample."

The researchers use a "30 degrees rotation technique" at the start to control the alignment of the top hBN and graphene layers. Then they use a "flip-over technique" to control the alignment of the top hBN and bottom hBN layers. Based on these two methods, they can control the lattice symmetry and tune the band structure of the graphene supermoire lattice. They have also shown that the neighbouring graphite edge can act as a guide for the stacking alignment. In this study, they have fabricated 20 moire samples with accuracy better than 0.2 degrees.

Prof Ariando said, "We have established three golden rules for our technique which can help many researchers in the two-dimensional materials community. Many scientists working in other strongly correlated systems like magic-angle twisting bilayer graphene or ABC-stacking multilayer graphene are also expected to benefit from our work. Through this technical improvement, I hope that it will accelerate the development of the next generation of moire quantum matter."

Currently, the research team is using this technique to fabricate the single-layer graphene supermoire lattice and explore the unique properties in this material system. Moreover, they are also extending the current technique to other material systems, to discover other novel quantum phenomena.

Research Report:Controlled alignment of supermoire lattice in double-aligned graphene heterostructures

Related Links
National University of Singapore
Understanding Time and Space


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...