...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Urania: muse of gravitational-wave astronomy

Urania: muse of gravitational-wave astronomy

Written by  Wednesday, 19 July 2023 11:31
Write a comment
Potsdam, Germany (SPX) Jul 19, 2023
The new supercomputer "Urania" has been put into operation by the Max Planck Institute for Gravitational Physics in Potsdam. With 6,048 compute-cores and 22 Terabyte of memory it is just as powerful as its predecessor, but requires only half the electricity to operate. Scientists in the Astrophysical and Cosmological Relativity department are now able to compute gravitational waveforms of coales
ADVERTISEMENT
Commercial UAV Expo | Sept 5-7, 2023 | Las Vegas
Urania: muse of gravitational-wave astronomy
by Staff Writers
Potsdam, Germany (SPX) Jul 19, 2023

The new supercomputer "Urania" has been put into operation by the Max Planck Institute for Gravitational Physics in Potsdam. With 6,048 compute-cores and 22 Terabyte of memory it is just as powerful as its predecessor, but requires only half the electricity to operate. Scientists in the Astrophysical and Cosmological Relativity department are now able to compute gravitational waveforms of coalescing black holes in ever more complex encounters.

The new supercomputer is located at the Max Planck Computing and Data Facility in Garching and replaces the department's previous cluster, which was called Minerva. Urania will be used for in-depth studies of binary black holes, and the gravitational waves emitted by them. In particular, scientists are interested in pairs of black holes which are either orbiting each other on elliptic orbits, or which are passing each other with their paths being deflected by their mutual gravitational attraction. A second research focus is on binary black-hole simulations, where one of the black holes is much, much smaller than the other one. A major scientific goal is the calculation of the gravitational-wave spectrum emitted by these processes.

Detailed knowledge of the expected signals is essential for searching and analyzing the data of current and future gravitational-wave detectors such as LIGO, Virgo and KAGRA, as well as the Einstein Telescope, Cosmic Explorer and the LISA mission in space. Thus, the newly produced binary black-hole simulations will also be employed by scientists in the department to develop ever more accurate waveform models.

More sensitive detectors require more detailed waveform templates
"We need to include more physically interesting parameters if we are to calculate increasingly accurate waveforms for all possible situations," says Alessandra Buonanno, director of the Astrophysical and Cosmological Relativity department. "We have already developed a new generation of waveform models for identifying the signals and their sources in the data from current detectors. With Urania, we can account for even more sophisticated binary systems - and at a much lower energy footprint."

Testing alternative theories of gravity
"The new cluster will also enable computer calculations of black holes in gravitational theories different from Einstein's theory of General Relativity," explains Harald Pfeiffer, group leader in the Astrophysical and Cosmological Relativity department. "Such predictions will make it possible to quantify which other theory of gravity agrees with the gravitational-wave measurements, and whether such putative alternative theory may even agree better than Einstein's theory."

Related Links
Astrophysical and Cosmological Relativity at AEI Potsdam
Max Planck Institute for Gravitational Physics
The Physics of Time and Space


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...