That previous study was also published in Science China Technological Sciences and was favorably reviewed.
"It is very encouraging to see the compact and capable ion spectrometer developed by a Chinese university. After comparing the parameters of their instrument with similar ones, this LEIS shows higher capability than other spectrometers," said the reviewer.
Since 2018, the team has been working on the research and development of LEIS for the BeiDou-3 satellite. Based on the previous payload, the researchers further expanded the detection range of the LEIS, improved its energy- and angular- resolutions, and decreased the power dissipation, size, and weight of the payload. The BeiDou-3 satellite was successfully launched in June 2020 with the LEIS onboard.
The observations of the LEIS payload show enhancements of ion fluxes, indicating the ion-ejection signatures from the notable storm or substorm and the associated surface charging.
The quantitative data of the differential energy flux of ions are consistent with the previous results of the Van-Allen Probes mission from NASA, proving that the LEIS is performing well. The reviewer observed, "The results are quite interesting, and the acquired scientific data are important in studying the magnetospheric ion dynamics as well as monitoring space environment."
The successful measurements by the LEIS provide insight into the magnetospheric ion dynamics related to the outer radiation belt, taking a new step towards better understanding and predicting space weather.
More information: Xu Shan et al, First results of the low energy ion spectrometer onboard a Chinese geosynchronous satellite, Science China Technological Sciences (2022). DOI: 10.1007/s11431-022-2143-6
RenXiang Hu et al, A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft, Science China Technological Sciences (2018). DOI: 10.1007/s11431-018-9288-8
Provided by University of Science and Technology of China