...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Linking mass extinctions to the expansion and radiation of land plants

Linking mass extinctions to the expansion and radiation of land plants

Written by  Sunday, 13 November 2022 09:32
Write a comment
Boulder CO (SPX) Nov 14, 2022
The Devonian Period, 419 to 358 million years ago, was one of the most turbulent times in Earth's past and was marked by at least six significant marine extinctions, including one of the five largest mass extinctions ever to have occurred. Additionally, it was during the Devonian that trees and complex land plants similar to those we know today first evolved and spread across the landscape

The Devonian Period, 419 to 358 million years ago, was one of the most turbulent times in Earth's past and was marked by at least six significant marine extinctions, including one of the five largest mass extinctions ever to have occurred.

Additionally, it was during the Devonian that trees and complex land plants similar to those we know today first evolved and spread across the landscape. This evolutionary advancement included the development of significant and complex root systems capable of affecting soil biogeochemistry on a scale the ancient Earth had yet to experience.

It has been theorized that these two seemingly separate events, marine extinctions and plant evolution and expansion, were intricately linked in the Devonian. Specifically, it has been proposed that plant evolution and root development occurred so rapidly and on such a massive scale that nutrient export from the land to the ancient oceans would have drastically increased.

This scenario is seen in modern systems where anthropogenically sourced nutrient export has vastly increased the nutrient load into areas such as the Gulf of Mexico and the Great Lakes, leading to large-scale algal blooms that ultimately deplete the oxygen in the water column. This effect, known as eutrophication, magnified on a global scale, would have been catastrophic to ancient oceans, fueling algal blooms that would have depleted most of the ocean's oxygen.

The key to linking mass extinctions and the expansion and radiation of land plants lies in identifying a nutrient flux elevated above background levels, linking that nutrient flux to either indirect or direct evidence of the presence of deeply rooting land plants and finally showing that this phenomenon occurred in multiple locations and times.

This study, the first of its kind, was able to do precisely that by utilizing geochemical records from ancient lake deposits in Greenland, northern Scotland, and Orkney. Utilizing lake records, elevated values of the nutrient phosphorus were detected in five distinct locations during the height of plant evolution and expansion in the Devonian.

In each case, elevated values of nutrient input were coincident with evidence of the presence of early trees in the form of fossilized spores and, in some cases, fossilized stems of the earliest deeply rooting tree, Archaeopteris. In two cases, that evidence coincided with a Devonian marine extinction event, including the most significant Devonian mass extinction, the Frasnian-Famennian extinction (also known as the Late Devonian mass extinction).

Additionally, this study, published yesterday in the Geological Society of America Bulletin, linked the periodic wet/dry climate cycles known to exist in the region during the Devonian with specific episodes of plant colonization. While elevated nutrient export was noted during both wet and dry climate cycles, the most significant export events occurred during wet cycles, suggesting that plant expansion was episodic and tied to climate cyclicity.

The episodic nature of plant expansion could help explain why there are at least six significant marine extinctions in the Devonian. While the scope of this study was limited to a single geographic region, it is likely that these events occurred throughout the Devonian Earth.

The colonization of different types of land plants in different regions and at different times would have resulted in episodic nutrient pulses significant enough to sustain eutrophication and cause (or at least contribute) to the numerous marine extinction events throughout the mid- to Late Devonian.

Research Report:Enhanced terrestrial nutrient release during the Devonian emergence and expansion of forests: Evidence from lacustrine phosphorus and geochemical records


Related Links
Indiana University
Explore The Early Earth at TerraDaily.com

Tweet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



EARLY EARTH
Evolution of tree roots may have driven mass extinctions
Bloomington IN (SPX) Nov 14, 2022
The evolution of tree roots may have triggered a series of mass extinctions that rocked the Earth's oceans during the Devonian Period over 300 million years ago, according to a study led by scientists at IUPUI, along with colleagues in the United Kingdom. Evidence for this new view of a remarkably volatile period in Earth's pre-history is reported in the Geological Society of America Bulletin, one of the oldest and most respected publications in the field of geology. The study was led by Gabriel F ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...