...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Optical foundations illuminated by quantum light

Optical foundations illuminated by quantum light

Written by  Friday, 14 October 2022 11:03
Write a comment
Tampere, Finland (SPX) Oct 11, 2022
Optics, the study of light, is one of the oldest fields in physics and has never ceased to surprise researchers. Although the classical description of light as a wave phenomenon is rarely questioned, the physical origins of some optical effects are. A team of researchers at Tampere University have brought the discussion on one fundamental wave effect, i.e., the debate around the anomalous behavi

Optics, the study of light, is one of the oldest fields in physics and has never ceased to surprise researchers. Although the classical description of light as a wave phenomenon is rarely questioned, the physical origins of some optical effects are. A team of researchers at Tampere University have brought the discussion on one fundamental wave effect, i.e., the debate around the anomalous behaviour of focused light waves, to the quantum domain.

The researchers have been able to show that quantum waves behave significantly differently from their classical counterparts and can be used to increase the precision of distance measurements. Their findings also add to the discussion on physical origin of the anomalous focusing behaviour. The results are now published in the prestigious journal of Nature Photonics.

"Interestingly, we started with an idea based on our earlier results and set out to structure quantum light for enhanced measurement precision. However, we then realised that the underlying physics of this application also contributes to the long debate about the origins of the Gouy phase anomaly of focused light fields.", explains Robert Fickler, group leader of the Experimental Quantum Optics group at Tampere University.

Quantum waves behave differently but point to the same origin
Over the last decades, methods for structuring light fields down on the single photon level have vastly matured and led to a myriad of novel findings. In addition, a better of optics' foundations has been achieved. However, the physical origin of why light behaves in such an unexpected way when going through a focus, the so-called Gouy phase anomaly, is still often debated. This is despite its widespread use and importance in optical systems. The novelty of the current study is now to put the effect into the quantum domain.

"When developing the theory to describe our experimental results, we realised (after a long debate) that the Gouy phase for quantum light is not only different than the standard one, but its origin can be linked to another quantum effect. This is just like what was speculated in an earlier work," adds Doctoral researcher Markus Hiekkamaki, leading author of the study.

In the quantum domain, the anomalous behaviour is sped up when compared to classical light. As the Gouy phase behaviour can be used to determine the distance a beam of light has propagated, the speed up of the quantum Gouy phase could allow for an improvement in the precision of measuring distances.

With this new understanding at hand, the researchers are planning to develop novel techniques to enhance their measurement abilities such that it will be possible to measure more complex beams of structured photons. The team expects that this will help them push forward the application of the observed effect, and potentially bring to light more differences between quantum and classical light fields.

Research Report:Observation of the quantum Gouy phase


Related Links
Tampere University
Stellar Chemistry, The Universe And All Within It

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



STELLAR CHEMISTRY
Salutary delay in the reaction of crystal atoms to avalanche of photons
Cracow, Poland (SPX) Jul 15, 2022
Using X-ray laser pulses, the structure of matter can be studied with previously unprecedented accuracy. However, the pulses are so violent that they destroy the sample being irradiated. Notwithstanding, a Polish-Japanese team of physicists has just succeeded in demonstrating that atoms of the crystal under investigation react to an avalanche of photons with a certain delay. The discovery means that by using sufficiently short laser pulses, it will be possible to view an undisturbed structure of matter. ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...