...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Radar images from Perseverance reveal underground surprises

Radar images from Perseverance reveal underground surprises

Written by  Friday, 26 August 2022 13:17
Write a comment
Los Angeles CA (SPX) Aug 26, 2022
After a tantalizing year-and-a-half wait since the Mars Perseverance Rover touched down on our nearest planetary neighbor, new data is arriving - and bringing with it a few surprises. The rover, which is about the size of car and carries seven scientific instruments, has been probing Mars' 30-mile-wide Jezero crater, once the site of a lake and an ideal spot to search for evidence of ancie

After a tantalizing year-and-a-half wait since the Mars Perseverance Rover touched down on our nearest planetary neighbor, new data is arriving - and bringing with it a few surprises.

The rover, which is about the size of car and carries seven scientific instruments, has been probing Mars' 30-mile-wide Jezero crater, once the site of a lake and an ideal spot to search for evidence of ancient life and information about the planet's geological and climatic past.

In a paper published in the journal Science Advances, a research team led by UCLA and the University of Oslo reveals that rock layers beneath the crater's floor, observed by the rover's ground-penetrating radar instrument, are unexpectedly inclined. The slopes, thicknesses and shapes of the inclined sections suggest they were either formed by slowly cooling lava or deposited as sediments in the former lake.

Perseverance is currently exploring a delta on the western edge of the crater, where a river once fed the lake, leaving behind a large deposit of dirt and rocks it picked up along its course. As the rover gathers more data, the researchers hope to clear up the complex history of this part of the Red Planet.

"We were quite surprised to find rocks stacked up at an inclined angle," said David Paige, a UCLA professor of Earth, planetary and space sciences and one of the lead researchers on the Radar Imager for Mars Subsurface Experiment, or RIMFAX. "We were expecting to see horizontal rocks on the crater floor. The fact that they are tilted like this requires a more complex geologic history. They could have been formed when molten rock rose up towards the surface, or, alternatively, they could represent an older delta deposit buried in the crater floor."

Paige said that most of the evidence gathered by the rover so far points to an igneous, or molten, origin, but based on the RIMFAX data, he and the team can't yet say for certain how the inclined layers formed. RIMFAX obtains a picture of underground features by sending bursts of radar waves below the surface, which are reflected by rock layers and other obstacles. The shapes, densities, thicknesses, angles and compositions of underground objects affect how the radar waves bounce back, creating a visual image of what lies beneath.

During Perseverance's initial 3-kilometer traverse, the instrument has obtained a continuous radar image that reveals the electromagnetic properties and bedrock stratigraphy - the arrangement of rock layers - of Jezero's floor to depths of 15 meters, or about 49 feet. The image reveals the presence of ubiquitous layered rock strata, including those that are inclined at up to 15 degrees. Compounding the mystery, within those inclined areas are some perplexing highly reflective rock layers that in fact tilt in multiple directions.

"RIMFAX is giving us a view of Mars stratigraphy similar to what you can see on Earth in highway road cuts, where tall stacks of rock layers are sometimes visible in a mountainside as you drive by," Paige explained. "Before Perseverance landed, there were many hypotheses about the exact nature and origin of the crater floor materials. We've now been able to narrow down the range of possibilities, but the data we've acquired so far suggest that the history of the crater floor may be quite a bit more complicated than we had anticipated."

The data collected by RIMFAX will provide valuable context to rock samples Perseverance is collecting, which will eventually be brought back to Earth.

"RIMFAX is giving us the backstory of the samples we're going to analyze. It's exciting that the rover's instruments are producing data and we're starting to learn, but there's a lot more to come," Paige said. "We landed on the crater floor, but now we're driving up on the actual delta, which is the main target of the mission. This is just the beginning of what we'll hopefully soon know about Mars."

Research Report:Ground penetrating radar observations of subsurface structures in the floor of Jezero crater, Mars


Related Links
University of California - Los Angeles
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Tweet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



MARSDAILY
Perseverance Soon Heads to 'Enchanted Lake'
Pasadena CA (JPL) Aug 23, 2022
After an extended stay at "Wildcat Ridge," the Perseverance team is preparing to head southwest to another sedimentary outcrop on the Jezero Crater delta called Enchanted Lake. This site has enchanted our science team since we first visited it back April. The drive to "Enchanted Lake" is expected to begin in the next few days with arrival in early September. Before beginning the drive, we'll continue efforts to assess the two small, string-like pieces of foreign object debris (FOD) detected ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...