...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • New study examines how many moons an earth-mass planet could host

New study examines how many moons an earth-mass planet could host

Written by  Wednesday, 24 August 2022 13:21
Write a comment
Arlington, TX (SPX) Aug 24, 2022
A new study by a trio of physics researchers attempts to quantify how many moons the Earth, or an exoplanet with the mass of Earth orbiting a Sun-like star, could host in its orbit. Their findings: Anywhere from three to seven, depending on the moon's mass. The study, titled "Moon-packing around an Earth-mass planet", was published in the August 1 online edition of the Monthly Notices of t

A new study by a trio of physics researchers attempts to quantify how many moons the Earth, or an exoplanet with the mass of Earth orbiting a Sun-like star, could host in its orbit. Their findings: Anywhere from three to seven, depending on the moon's mass.

The study, titled "Moon-packing around an Earth-mass planet", was published in the August 1 online edition of the Monthly Notices of the Royal Astronomical Society. Lead author is Suman Satyal, adjunct assistant professor in physics at The University of Texas at Arlington. Satyal earned his Ph.D. in Physics from UTA in 2014.

Co-authors are Billy Quarles, who earned a Ph.D. in Physics from UTA in 2012 and is an assistant professor of astronomy and physics at Valdosta State University in Georgia; and Marialis Rosario-Franco, who earned a Ph.D. in Physics from UTA in 2021 and is an assistant teaching professor in astrophysical and planetary sciences at the University of Colorado at Boulder.

The Earth has a single moon and Mars has two, while neither Mercury nor Venus has any. But some of the Solar System's giant planets, including Jupiter and Saturn, have dozens.

"Most planets in our Solar System contain multiple moons," Satyal said. "Notably, giant planets like Jupiter and Saturn host approximately 80 moons. But the rocky planet Mars hosts two moons and Earth hosts one. These discrepancies could be tied to different formation mechanism and orbital evolution processes."

In their study, the team used a series of N-body simulations, which approximate the motion of particles, to answer the question of how many moons could stably orbit Earth or an Earth-mass exoplanet.

"Our model ignores the gravitational effects of all the other planets within the Solar System," Quarles said. "This is important when we look beyond the Solar System because there are a large number of systems with only a single planet candidate. There are currently two exomoon candidates, but they both orbit Jupiter-like planets at about one astronomical unit (approximately 150 million km or 93 million miles)."

The team's study set the N-body simulation of multiple moons between the inner (Roche radius) and outer (Hill radius) stability limits for orbital bodies. In theory, a moon would be disintegrated by the host planet's tidal forces if it were to orbit inside the Roche radius, and would escape the planet's gravitational field if it were to orbit outside the Hill radius.

"However, the numerical studies have shown that the practical stability limits are within twice the Roche radius and about half of the Hill radius," Satyal said. "Thus, we started the simulation of multiple moons (up to nine) between these reduced boundary limits and checked how many of them survived until the end of the simulation time."

The team used moons with the mass of Ceres, Pluto, and Luna (Earth's own moon) as prototype masses to compute orbital stability constraints. They found an upper limit of three Luna-mass moons, four Pluto-mass moons, and seven Ceres-mass moons which could orbit an exoplanet with the mass of Earth.

Even though approximately 5,000 known exoplanets have the probability of hosting tens of hundreds of exomoons, no confirmed exomoons have been detected yet. There are other observational constraints and limitations for such non-detection, Satyal said.

"For future observations, we believe that this work has great implications as it limits the existence of exomoons for Earth analogs in their respective habitable zones," Satyal said. "With improvements in telescope sensitivity, such as the recently launched James Webb Space Telescope, we may be able to apply the transit method (measuring the depth in the starlight) to detect exomoons. Since it is possible for rocky planets, like Earth, to host more than one moon, it increases the probability of their detection. Such detection, and even a theoretical possibility, would beg the answer for the question regarding their formation scenario."

"As the search for exomoons around Earth-like planets continues, our paper provides an upper limit to how many moons we should expect," Quarles said. "If the observations suggest multiple exomoon candidates, some of those could be ruled out by either our current work or potentially through previous work performed by scientists at UTA. All four giant planets of the Solar System host multiple moons, so we may find exomoons to come in multiples as well."

Quarles noted that the new study could have cultural significance with regard to depictions of exomoons in science fiction films and other media.

"While we were performing our investigation, I watched the movie Stargate and noticed that the extragalactic planet that the team travels to has three moons," he said. "Many films illustrate the possibility of exomoons, such as Pandora from Avatar, or the forest moon Endor from Star Wars. Our study could help future works appear more astronomically accurate."


Related Links
UTA College of Science
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
Brightest stars in the night sky can strip Neptune-sized planets to their rocky cores
Berkeley CA (SPX) Aug 15, 2022
Over the last 25 years, astronomers have found thousands of exoplanets around stars in our galaxy, but more than 99% of them orbit smaller stars - from red dwarfs to stars slightly more massive than our sun, which is considered an average-sized star. Few have been discovered around even more massive stars, such as A-type stars - bright blue stars twice as large as the sun - and most of the exoplanets that have been observed are the size of Jupiter or larger. Some of the brightest stars in the nigh ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...