Access the video
From this work, it becomes clear that our Sun will reach a maximum temperature at approximately 8 billion years of age, then it will cool down and increase in size, becoming a red giant star around 10–11 billion years of age. The Sun will reach the end of its life after this phase, when it eventually becomes a dim white dwarf.
Finding stars similar to the Sun is essential for understanding how we fit into the wider Universe. "If we don't understand our own Sun – and there are many things we don't know about it – how can we expect to understand all of the other stars that make up our wonderful galaxy,” says Orlagh.
It is a source of some irony that the Sun is our nearest, most studied star yet its proximity forces us to study it with completely different telescopes and instruments from those that we use to look at the rest of the stars. This is because the Sun is so much brighter than the other stars. By identifying similar stars to the Sun, but this time with similar ages, we can bridge this observational gap.
To identify these ‘solar analogues’ in the Gaia data, Orlagh and colleagues looked for stars with temperatures, surface gravities, compositions, masses and radii that are all similar to the present-day Sun. They found 5863 stars that matched their criteria.