...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Making Muons for Scientific Discovery, National Security

Making Muons for Scientific Discovery, National Security

Written by  Wednesday, 27 July 2022 09:43
Write a comment
Washington DC (SPX) Jul 25, 2022
The Defense Department and other federal agencies have sought advanced sources that generate gamma rays, X-rays, neutrons, protons, and electrons to enable a variety of scientific, commercial, and defense applications - from medical diagnostics, to scans of cargo containers for dangerous materials, to non-destructive testing of aircraft and their parts to see internal defects. But none of these

The Defense Department and other federal agencies have sought advanced sources that generate gamma rays, X-rays, neutrons, protons, and electrons to enable a variety of scientific, commercial, and defense applications - from medical diagnostics, to scans of cargo containers for dangerous materials, to non-destructive testing of aircraft and their parts to see internal defects. But none of these sources can image through concrete walls several meters thick, map the core of a volcano from the outside, or peer deep underground to locate chambers and tunnels. For such imaging capabilities, a more powerful particle is needed.

DARPA's Muons for Science and Security program (MuS2 - pronounced Mew-S-2) aims to create a compact source of deeply penetrating subatomic particles known as muons. Muons are similar to electrons but about 200 times heavier. At high energy, muons can travel easily through dozens to hundreds of meters of water, solid rock, or soil. Producing muons, however, is a challenge, because it requires a very high-energy, giga-electronvolt (GeV) particle source. Currently, two primary sources for muons exist. Cosmic ray interactions in the upper atmosphere naturally generate muons as they descend to Earth in created particle showers.

Harnessing these muons for imaging is tedious and not very practical. Cosmic muons have played a role in special projects, such as when scientists used them to image interior chambers of the great pyramids in Egypt. Given the small number of muons that reach the Earth's surface and the divergent paths they travel through the atmosphere, it can take days to months to capture enough muon data to produce meaningful results.

Muons can also be generated terrestrially. But making muons requires such high-energy particles that production is limited to large physics research facilities such as the United States' Fermilab national particle accelerator in Illinois and the European CERN accelerator in Switzerland.

"Our goal is to develop a new, terrestrial muon source that doesn't require large accelerators and allows us to create directional beams of muons at relevant energies, from 10s to 100s of GeVs - to either image or characterize materials," said Mark Wrobel, MuS2 program manager in DARPA's Defense Sciences Office.

"Enabling this program is high-peak-power laser technology that has been steadily advancing and can potentially create the conditions for muon production in a compact form factor. MuS2 will lay the ground work needed to examine the feasibility of developing compact and transportable muon sources."

MuS2 aims to employ what's called laser plasma acceleration (LPA) to initially create 10 GeV particles in the space of tens of centimeters compared to hundreds of meters needed for state-of-the art linear accelerators. Ultimately, MuS2 seeks to develop scalable and practical processes to produce conditions that can create muons exceeding 100 GeV through innovations in LPA, target design, and compact laser driver technology.

Muons are sensitive to density variation as they penetrate materials, which makes them particularly advantageous for locating voids in solid structures. If MuS2 and any follow-on efforts are successful, whole buildings could be scanned from the outside to characterize internal structures and detect the presence of threat materials such as special nuclear materials. Other potential applications include rapidly mapping the location of underground tunnels and chambers hundreds of meters below the Earth's surface.

MuS2 is a four-year program divided into two phases. During the 24-month first phase, teams will conduct initial modeling and scaling studies and use experiments to validate models as well as attempt to produce 10 GeV muons. In the second 24-month phase, teams will aim to develop scalable accelerator designs for 100 GeV or greater and produce relevant numbers of muons for practical applications.

Given the strong focus on fundamental research, high-energy physics, and defense applications, MuS2 seeks integrated teams that can holistically investigate practical muon sources. Teams will require expertise in the following areas:

+ Experimentation: Petawatt-level laser facilities, LPA regimes, and muon target design

+ Simulation: High-performance computing, particle-in-cell, Monte Carlo, and multiphysics modeling

+ Laser driver and system studies: Exploration of efficient, compact, and high-repetition rate laser technologies and design studies leading to systems with transportable form factors

"To address these diverse research areas, we anticipate building integrated teams composed of academia, national laboratories, and defense industries," Wrobel said.

A proposers day is scheduled for August 5, 2022, via webcast. Visit SAM.gov for more information including registration details.


Related Links
Defense Advanced Research Projects Agency
Space Technology News - Applications and Research

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TECH SPACE
France plans fashion revolution with climate-impact labels
Paris (AFP) July 21, 2022
Is it better for the environment if you buy a brand-new cotton T-shirt or a recycled one? Well, it depends. Recycling has obvious benefits, but the process shortens cotton fibres and so usually has to be mixed with some oil-based material to keep it from falling apart. Such trade-offs make it tricky to figure out the real sustainability rating of clothes - but brands in Europe will soon have no choice. By next year, every item of clothing sold in France will require a label detailin ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...