...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Assembling the first global map of lunar hydrogen

Assembling the first global map of lunar hydrogen

Written by  Wednesday, 20 July 2022 18:27
Write a comment
Johns Hopkins APL assembles first global map of lunar hydrogen
Hydrogen distribution at the north lunar pole, poleward of 70 degrees latitude. Credit: Johns Hopkins APL

Using data collected over two decades ago, scientists from the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, have compiled the first complete map of hydrogen abundances on the Moon's surface. The map identifies two types of lunar materials containing enhanced hydrogen and corroborates previous ideas about lunar hydrogen and water, including findings that water likely played a role in the Moon's original magma-ocean formation and solidification.

APL's David Lawrence, Patrick Peplowski and Jack Wilson, along with Rick Elphic from NASA Ames Research Center, used orbital data from the Lunar Prospector mission to build their map. The probe, which was deployed by NASA in 1998, orbited the Moon for a year and a half and sent back the first direct evidence of enhanced at the lunar poles, before impacting the .

When a star explodes, it releases , or high-energy protons and neutrons that move through space at nearly the speed of light. When those cosmic rays come into contact with the surface of a planet, or a moon, they break apart atoms located on those bodies, sending protons and neutrons flying. Scientists are able to identify an element and determine where and how much of it exists by studying the motion of those protons and neutrons.

"Imagine you're playing a game of pool and the cue ball represents neutrons and the billiard balls represent hydrogen," explained Lawrence. "When you hit a billiard ball with your cue ball, the cue ball stops moving and the billiard ball is pushed into motion, because both objects have the same mass. Similarly, when a neutron comes in contact with hydrogen, it dies and stops moving, and the hydrogen is sent into motion. So when we see a fewer number of neutrons moving about, it's an indication hydrogen is present."

Johns Hopkins APL assembles first global map of lunar hydrogen
Hydrogen distribution at the south lunar pole, poleward of 70 degrees latitude. Credit: Johns Hopkins APL

The team calibrated the data to quantify the amount of hydrogen by the corresponding decrease of neutrons measured by the Neutron Spectrometer, one of five instruments mounted on Lunar Prospector to complete gravitational and compositional maps of the Moon. The findings were published in the Journal of Geophysical Research: Planets.

"We were able to combine data from lunar soil samples from the Apollo missions with what we've measured from space and finally put together a full picture of lunar hydrogen for the first time," continued Lawrence.

The team's map confirms enhanced hydrogen in two types of lunar materials. The first, at the Aristarchus Plateau, is home to the Moon's largest pyroclastic deposit. These deposits are fragments of rock erupted from volcanoes, corroborating prior observations that hydrogen and/or water played a role in lunar magmatic events. The second is KREEP-type rocks. KREEP is an acronym for lunar lava rock that stands for potassium (K), rare earth elements (REE) and phosphorus (P).

"When the Moon originally formed, it's largely accepted that it was molten debris from a huge impact with Earth," Lawrence said. "As it cooled, minerals formed out of the melt, and KREEP is thought to be the last type of material to crystallize and harden."

Johns Hopkins APL assembles first global map of lunar hydrogen
As cosmic rays from distant stars hit the surface of planets or moons, they break apart atoms located on those bodies. Scientists study the motion of the protons and neutrons to identify an element and determine how much of it exists. Credit: Johns Hopkins APL/Magda Saina

Lawrence, who was part of the original team that studied initial data from the Lunar Prospector mission in 1998, said building on existing efforts to complete a full map of Earth's nearest neighbor took time.

"Finalizing the analysis took a number of years," said Lawrence. "As we were sorting through everything, we began making corrections to data that we discovered was not hydrogen. We went back and fine-tuned previous analyses, and in large part, we were able to do that because of discoveries from other missions. We are continuously building off of previous knowledge and stepping into new territory."

This new map not only completes the inventory of hydrogen on the Moon but could also lead to quantification of how much hydrogen and water was present in the Moon when it was born. In 2013, APL researchers also confirmed the presence of water ice at the poles on the planet Mercury using data from the neutron spectrometer on the APL-built MESSENGER spacecraft. These discoveries are important not only for understanding the solar system but also in planning future human exploration of the solar system.


Explore further

Water on the moon?

More information: David J. Lawrence et al, Global Hydrogen Abundances on the Lunar Surface, Journal of Geophysical Research: Planets (2022). DOI: 10.1029/2022JE007197
Provided by Johns Hopkins University Applied Physics Laboratory
Citation: Assembling the first global map of lunar hydrogen (2022, July 20) retrieved 20 July 2022 from https://phys.org/news/2022-07-global-lunar-hydrogen.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...