...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

The greening ashore

Written by  Tuesday, 21 June 2022 09:27
Write a comment
Duesseldorf, Germany (SPX) Jun 21, 2022
A team led by evolutionary biologist Prof. Dr. Sven Gould of Heinrich Heine University Dusseldorf (HHU) has been studying the current state of research on the plant colonisation of land that occurred some 500 million years ago. The findings from this illustrated overview study published by Dr. Mona Schreiber as lead author have now appeared in the latest issue of the journal Trends in Plant Scie

A team led by evolutionary biologist Prof. Dr. Sven Gould of Heinrich Heine University Dusseldorf (HHU) has been studying the current state of research on the plant colonisation of land that occurred some 500 million years ago. The findings from this illustrated overview study published by Dr. Mona Schreiber as lead author have now appeared in the latest issue of the journal Trends in Plant Science.

It took several hundred million years after the formation of Earth some 4 0.5 billion years ago for the initially fiery globe to cool down, allowing the first oceans and land masses to form. The land was barren rock for the next three billion years.

The blue planet with green continents that we know today did not exist as such in that era. For conditions on the continents were largely hostile to life, with a much higher volcanic activity releasing toxic gases into the atmosphere, a weaker magnetic field than exists today exposing the land more to cosmic rays, and a thinner ozone layer to filter out UV light.

This started changing approximately 500 million years ago when plants began colonizing land. The invasion catalysed a metamorphosis of the hostile environment, accelerating the transformation of the atmosphere, to lay the foundations for the development of life on land as we know it today. All this could only occur once plants, which had only lived in the oceans and inland freshwater, had conquered the continents.

Now Prof. Dr. Sven Gould of the Institute of Molecular Evolution at HHU, Prof. Dr. Stefan Rensing and Dr. Mona Schreiber, a bioinformatics specialist and artist from the University of Marburg, are providing an overview of the current state of research on the plant colonization of land in the journal Trends in Plant Science. Their paper was written in connection with priority programme 2237 "MAdLand" (Molecular Adaptation to Land), funded by the German Research Foundation. The purpose of the MAdLand programme is to explore the beginnings of the evolutionary adaptation of plant organisms to life on land.

The continents only began turning green after a streptophyte alga moved from an aquatic habitat into shore zones before completely transitioning onto land over 500 million years ago, in a process involving numerous molecular and morphological adaptations. Throughout Earth's ongoing changes, plants demonstrated tremendous adaptational capability and altered the climate in crucial fashion, chiefly by fixing carbon dioxide (CO2) on a massive scale.

Terrestrial flora spread in a dominant tour de force, with flowering plants proliferating in explosive fashion; today they comprise over 90% of all known terrestrial plant species. In the history of our planet, land plants have caused several climatic changes, demonstrating tremendous adaptive capability again and again.

Researchers are studying the genomes of species of evolutionary significance with regards to terrestrilization, including mosses, lycopods, ferns and certain algae, in an effort to advance our knowledge of evolutionary processes and molecular adaptation. Their work aims at identifying the mechanisms that served to mitigate hostile life conditions on land, which changed in the course of this evolution. These may indeed prove relevant with regard to climate change, including for crop modification in response to shifting environmental conditions.

Regarding the role of humans in the planet's evolution, the study's senior author Professor Gould elucidates: "Human beings, which have but a brief history compared to plants, are indeed responsible in their own right for significant changes to the planet and its climate. The extreme rapidity of those changes poses a major problem, as nature has little insufficient time to adapt. The pace of human-caused change accelerated when man developed agriculture and animal husbandry, which led to steady population growth and the clearing of ever more land for farming." In this work the collaborating authors analyse human influences on the climate, discussing the adaptability of plant life to the changes that are today unfolding.

Research Report:The Greening Ashore


Related Links
Heinrich-Heine University Duesseldorf
Explore The Early Earth at TerraDaily.com

Tweet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



EARLY EARTH
New insights into the interaction of ocean, continent and atmosphere 2.7 billion years ago
Bremen Germany (SPX) Jun 14, 2022
What did the Earth look like 2.7 billion years ago and what were the differences compared to today? What was the chemical composition of the oceans and atmosphere? When did life evolve on Earth, that produced enough oxygen to permanently change the environment? How did the interaction of the Earth's mantle and crust work? These are all crucial questions for understanding our planet. The Temagami BIF rock formation provides clues to answering these questions. The abbreviation BIF stands for Banded ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...