...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • You can hear every event twice in a three-dimensional quantum gas

You can hear every event twice in a three-dimensional quantum gas

Written by  Wednesday, 15 June 2022 11:52
Write a comment
Cambridge UK (SPX) Jun 10, 2022
If you could immerse yourself in a quantum fluid, you would hear every event twice, because they support two sound waves with different speeds. The researchers in their experiment have realized this remarkable property for the first time in a three-dimensional quantum gas, instead of a quantum liquid. They achieved this result through cooling a gas of potassium atoms trapped by laser beams

If you could immerse yourself in a quantum fluid, you would hear every event twice, because they support two sound waves with different speeds.

The researchers in their experiment have realized this remarkable property for the first time in a three-dimensional quantum gas, instead of a quantum liquid. They achieved this result through cooling a gas of potassium atoms trapped by laser beams in ultrahigh vacuum to less than a millionth of a degree above absolute zero temperature, where it partly forms a Bose-Einstein Condensate.

Those are typically weakly interacting, but in their experiment, they increase the interaction so much that the gas becomes hydrodynamic. They excite standing waves at different frequencies and observe two resonances of so-called first and second sound.

This effect is well studied in quantum liquids like superfluid helium, but the compressibility of their Bose gas is as large as the one of air, so it is still a gas, not a liquid. Remarkably, Landau's famous two-fluid model, a theory developed for superfluid helium in the 1940s, still describes their superfluid gas well. In their system, the two fluids mainly consist of the condensed and non-condensed parts of the gas respectively.

They experimentally resolve the relative motion of the two parts, which oscillate together in the classical first sound but move opposite to each other in second sound. The microscopic theoretical description of their gas is much simpler than the one for a liquid, promising new insights into the understanding of quantum hydrodynamics.

Research Report:First and Second Sound in a Compressible 3D Bose Fluid


Related Links
University of Cambridge
Understanding Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TIME AND SPACE
Combination of heavy-ion experiments, astronomy, and theory offers new insights
Potsdam, Germany (SPX) Jun 09, 2022
For the first time, an international research team, including researchers from the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and Potsdam University has combined data from nuclear physics experiments, gravitational-wave measurements and other astronomical observations with theoretical insights to more precisely constrain how nuclear matter behaves inside neutron stars. The results were published in the scientific journal Nature today. Neutron stars are born in super ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...