The subatomic particles called neutrinos, are believed to be ubiquitous throughout the Universe but are very difficult to detect. Now, Moroccan astrophysicist Salah Eddine Ennadifi and his co-workers, published a paper in EPJ Plus that describes the first known observation of intergalactic, high-energy neutrinos and probes new neutrino-related physics beyond the Standard Model of Particle Physics.
Neutrinos are puzzling particles; they are similar in many ways to electrons, but have no charge and no, or a very tiny mass. Scientists have suggested many astrophysical bodies as neutrino sources, but only two such sources have been studied: our Sun, and a single supernova (Supernova 1987A).
Neutrinos interactions are rare and can only be observed in a large volume of transparent material, which in practice means water or ice. The IceCube Neutrino Observatory (or telescope) at the South Pole consists of a cubic kilometre of clear, pure and stable ice that acts as a neutrino detector. Ennadifi and his colleagues, from Mohammed V University, Rabat, Morocco, are members of the international IceCube Collaboration.
In this paper, Ennadifi and his co-workers report the detection, by the IceCube telescope, of a high-energy neutrino that is associated with an astrophysical object called a blazar (a quasar with a relativistic jet). This is thought to have an energy of about 300 TeV (300 trillion electron volts) and the blazar associated with it is thought to be about 4 billion light years from Earth. If this is correct, it would fit the definition for a 'truly astrophysical neutrino'.
High-energy neutrinos like this one, although very rare, are useful tools for studying so-called 'new physics' beyond the Standard Model. The researchers were able to give it an estimated mass, which itself goes beyond the Standard Model as that includes only massless neutrinos. They conclude that high-energy neutrinos from cosmic sources are likely to yield more 'surprising' insights and to our further revising our understanding of the forces of nature.
Research Report:Probing new physics scale from TXS 0506+056 blazar neutrinos
Related Links
IceCube Neutrino Observatory
Stellar Chemistry, The Universe And All Within It
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Over half a million dollars for space telecommunications research
Quebec City, Canada (SPX) Apr 06, 2022
Fibers used in space research are exposed to cosmic radiation, resulting in a degradation of their optical properties. Once irradiated, these fibers dissipate heat that could be harvested and converted into electrical energy to power the satellites functions. This is why Professor Federico Rosei of Institut national de la recherche scientifique (INRS) is working to optimize fibers for use in space and in energy recovery. Professor Rosei's team is leading this project in collaboration with Polytech ... read more