A new study shows a deep connection between some of the largest, most energetic events in the Universe and much smaller, weaker ones powered by our own Sun.
The results come from a long observation with NASA's Chandra X-ray Observatory of Abell 2146, a pair of colliding galaxy clusters located about 2.8 billion light years from Earth. The new study was led by Helen Russell of the University of Nottingham in the United Kingdom.
Galaxy clusters contain hundreds of galaxies and huge amounts of hot gas and dark matter and are among the largest structures in the Universe. Collisions between galaxy clusters release enormous amounts of energy unlike anything witnessed since the big bang and provide scientists with physics laboratories that are unavailable here on Earth.
In this composite image of Abell 2146, Chandra X-ray data (purple) shows hot gas, and Subaru Telescope optical data shows galaxies (red and white). One cluster is moving towards the bottom left and plowing through the other cluster. The hot gas in the former is pushing out a shock wave, like a sonic boom generated by a supersonic jet, as it collides with the hot gas in the other cluster.
The shock wave is about 1.6 million light years long and is labeled in a version of the X-ray image that has been processed to emphasize sharp features. Also labeled are the hot gas in the center of the cluster moving towards the lower left and its direction of motion. A second shock wave of similar size is seen behind the collision. Called an "upstream shock," features like this arise from the complex interplay of stripped gas from the infalling cluster and the surrounding cluster gas.
Shock waves like those generated by a supersonic jet are collisional shocks, involving direct collisions between particles. In Earth's atmosphere near sea level, gas particles typically travel only about 4 millionths of an inch before colliding with another particle.
Conversely, in galaxy clusters and in the solar wind - streams of particles blown away from the Sun - direct collisions between particles occur too rarely to produce shock waves because the gas is so diffuse, with incredibly low density. For example, in galaxy clusters particles typically must travel about 30,000 to 50,000 light years before colliding. Instead, the shocks in these cosmic environments are "collisionless," generated by interactions between charged particles and magnetic fields.
Chandra observed Abell 2146 for a total of about 23 days, giving the deepest X-ray image yet obtained of shock fronts in a galaxy cluster. The two shock fronts in Abell 2146 are among the brightest and clearest shock fronts known among galaxy clusters.
Using this powerful data, Russell and her team studied the gas temperature behind the shock waves in Abell 2146. They showed that electrons have been mainly heated by compression of gas by the shock, an effect like that seen in the solar wind. The rest of the heating occurred by collisions between particles. Because the gas is so diffuse this additional heating took place slowly, over about 200 million years.
Chandra makes such sharp images that it can actually measure how much random gas motions are blurring shock front that is expected from theory to be much more narrow. For this cluster, they measure random gas motions of around 650,000 miles per hour.
Collisionless shock waves are important in several other fields of research. For example, the radiation produced by shocks in the solar wind can negatively impact spacecraft operation, as well as the safety of humans in space.
Related Links
Chandra X-ray Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Plato's cave: vacuum test for exoplanet detection
Paris (ESA) Jun 02, 2022
A test version of the payload module of ESA's exoplanet-detecting Plato spacecraft underwent a prolonged vacuum soak within Europe's largest thermal vacuum chamber, to evaluate its endurance of space conditions. There are tasks in space where multiple smaller imagers are better than one big equivalent. ESA PLAnetary Transits and Oscillations of stars mission, Plato, is to detect Earth-scale exoplanets using an array of 26 cameras to perform prolonged observations of target stars. This combination ... read more