...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Carbon dioxide glaciers are moving at the Martian south pole

Carbon dioxide glaciers are moving at the Martian south pole

Written by  Wednesday, 27 April 2022 06:42
Write a comment
Tucson AZ (SPX) Apr 27, 2022
Glaciers of carbon dioxide are moving, creating deposits kilometers thick today across the south polar region of Mars, something that could have been going on more than 600,000 years, a paper by Planetary Science Institute Research Scientist Isaac Smith says. "The CO2 deposits that were first identified in 2011 turn out to be flowing today, just like glaciers on Earth," said Smith, lead au

Glaciers of carbon dioxide are moving, creating deposits kilometers thick today across the south polar region of Mars, something that could have been going on more than 600,000 years, a paper by Planetary Science Institute Research Scientist Isaac Smith says.

"The CO2 deposits that were first identified in 2011 turn out to be flowing today, just like glaciers on Earth," said Smith, lead author of "Carbon Dioxide Ice Glaciers at the South Pole of Mars" that appears in the Journal for Geophysical Research - Planets.

"Approximately 600,000 years ago CO2 ice started forming at the Martian south pole. Due to climate cycles, the ice has increased in volume and mass several times, interrupted by periods of mass loss through sublimation," Smith said. "If the ice had never flowed, then it would mostly be where it was originally deposited, and the thickest ice would only be about 45 meters thick. Instead, because it flowed downhill into basins and spiral troughs - curvilinear basins - where it ponded, it was able to form deposits reaching one kilometer thick.

"The glaciers have enough mass that if sublimated, they would double the atmospheric pressure of the planet. It's a stunning quantity, and a 2018 paper by PSI Senior Scientist Than Putzig measured it most accurately," Smith said. "The longest glacier is about 200 kilometers long and about 40 kilometers across. These are big! That activity is ongoing, but flow rates probably peaked about 400,000 years ago when deposition was greatest. We're in a slow period because the ice is decreasing in mass, and that slows down glaciers."

Recent work conducted in part at PSI (and funded to Smith) investigated the flow laws, or strength properties of carbon dioxide ice. That work found that CO2 ice flows close to 100 times faster than H2O ice in Martian conditions and on high slopes. This is why the CO2 ice behaves as glaciers where the rest of the H2O ice cap that supports it appears stationary.

Analysis of glacial modeling results, using NASA's Ice Sheet and Sea-Level System Model, supported by two co-authors and adapted by Smith to work on Mars and with CO2, showed that the CO2 ice had not been moved by typical methods. "Atmospheric deposition would put the ice in a pattern we don't see. It would be much more evenly spread and thinner. What the glacier interpretation provides is a mechanism to move the ice from high places, into the lower basins that are also at lower latitude," Smith said.

"If atmospheric deposition were the only process acting on the ice, then most of it would be found at the highest latitude and highest elevation. That's just not the case. The ice is flowing downhill into basins, much like water flows downhill into lakes. Only glacial flow can explain the distribution we found in 2018."

Additional work by Smith and his team found several surface features that are very good analogues to features we see on terrestrial glaciers. Those include topographic profiles, crevasses, and compression ridges that resemble terrestrial features. This strengthened the conclusions and provided a basis to compare with the models.

Earth, Mars and Pluto are the only bodies in the Solar System known to have actively flowing ice, but they're probably not alone. Numerous types of ice exist in the solar system, and with the count of dwarf plants increasing, it's likely that some of them will have glaciers of carbon monoxide or methane, even more exotic than the dry ice glaciers just discovered on Mars.

Research Report:"Carbon Dioxide Ice Glaciers at the South Pole of Mars"

Research Report:Three-dimensional radar imaging of structures and craters in the Martian polar caps


Related Links
Planetary Science Institute
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Tweet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



MARSDAILY
Mars may have less water than previously estimated
Austin TX (SPX) Apr 26, 2022
Researchers from the Oden Institute and Jackson School of Geosciences have developed an improved model for planet-wide groundwater flow prediction on Mars that is not only more accurate but, according to its author, more elegant too. Mars is believed to have collided with a huge astral entity around four billion years ago. The Late Heavy Bombardment refers to a period where it is believed that a disproportionately large number of asteroids collided with Mercury, Venus, Earth and Mars. Many m ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...