Mercury harbors water ice in the shadows of the steepest craters around its poles. But it is unclear how those water molecules ended up on Mercury. Now a new simulation shows that incoming minor bodies such as asteroids, comets and dust particles carry enough water to account for all the ice sheets present. The study could form the basis for new research on water in exoplanetary systems. Publication in Icarus on April 19th.
We have known for a few decades that Mercury harbors water. You might expect that this can only be in the form of water vapor. After all, the planet has no atmosphere so we can rule out a liquid due to a lack of pressure. And Mercury is almost three times closer to the Sun than the Earth is, so water ice doesn't seem likely either. But then you forgot about craters.
Steep craters at high latitudes contain troughs that are forever captured in darkness, only illuminated by the dimly glowing band of the Milky Way against the backdrop of an eternal black sky. These eerie places are home to ice sheets many meters thick, on the closest planet to the Sun. Now the question remains: how did those water molecules end up on Mercury?
First author Kateryna Frantseva (SRON/RUG) has developed an algorithm that simulates meteorite impacts in the form of asteroids, comets and interplanetary dust particles (IDPs). It turns out that over the course of a billion years these bodies bring enough water to Mercury's surface to explain the amount that we currently see.
Frantseva: 'We cannot rule out endogenous sources of water such as volcanic activity and outgassing from the crust and mantle, but this shows that we don't need anything other than impacts from minor bodies to explain the water we see on Mercury.' The simulation shows that IDPs carry by far the heaviest load, with over ten thousand kilograms per year. In comparison, asteroids and comets deliver yearly each about a thousand kilograms.
The simulation provides a basis for new theoretical models for water delivery to exoplanets-planets outside our Solar System. These can be compared to future observations, for example from the recently launched James Webb telescope, in which astronomers might be able to spot water signatures in the spectrum of light that asteroid belts in exoplanetary systems emit while re-radiating light from their host star.
First author Kateryna Frantseva is a Ukrainian scientist based in The Netherlands. She is part of a network of Ukrainian volunteers working in Dutch academia that support their home country. To help out, you can donate here. If you live outside of The Netherlands, you can donate here. The cartoon was made by Anastasiia Kriuchevska.
Research Report:Exogenous delivery of water to Mercury
Related Links
Netherlands Institute for Space Research
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Scientists find Mercury has magnetic storms
Fairbanks AS (SPX) Apr 01, 2022
An international team of scientists has proved that Mercury, our solar system's smallest planet, has geomagnetic storms similar to those on Earth. The research by scientists in the United States, Canada and China includes work by Hui Zhang, a space physics professor at the University of Alaska Fairbanks Geophysical Institute. Their finding, a first, answers the question of whether other planets, including those outside our solar system, can have geomagnetic storms regardless of the size of t ... read more