...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • MAGIC telescopes observe nova explosion

MAGIC telescopes observe nova explosion

Written by  Friday, 15 April 2022 21:46
Write a comment
Munich, Germany (SPX) Apr 15, 2022
Light on, light off - this is how one could describe the behavior of the nova, which goes by the name RS Ophiuchi (RS Oph). Every 15 years or so, a dramatic explosion occurs in the constellation of the Serpent Bearer. Birthplaces of a nova are systems in which two very different stars live in a parasitic relationship: A white dwarf, a small, burned-out and tremendously dense star - a teaspoon of

Light on, light off - this is how one could describe the behavior of the nova, which goes by the name RS Ophiuchi (RS Oph). Every 15 years or so, a dramatic explosion occurs in the constellation of the Serpent Bearer. Birthplaces of a nova are systems in which two very different stars live in a parasitic relationship: A white dwarf, a small, burned-out and tremendously dense star - a teaspoon of its matter weighs about 1 ton - orbits a red giant, an old star that will soon burn up.

The dying giant star feeds the white dwarf with matter shedding its outer hydrogen layer as the gas flows onto the nearby white dwarf. This flow of matter continues, until the white dwarf over(h)eats itself. The temperature and pressure in the newly gained stellar shells become too large and are flung away in a gigantic thermonuclear explosion. The dwarf star remains intact and the cycle begins again - until the spectacle repeats itself.

Explosion in the high-energy range
It had been speculated that such explosions involve high energies. The two MAGIC telescopes recorded gamma rays with the value of 250 gigaelectronvolts (GeV), among the highest energies ever measured in a nova. By comparison, the radiation is a hundred billion times more energetic than visible light.

MAGIC was able to make its observations following initial alerts from other instruments measuring at different wavelengths. "The spectacular eruption of the RS Ophiuchi shows that the MAGIC telescopes' fast response really pays off: It takes them no more than 30 seconds to move to a new target," said David Green, a scientist at the Max Planck Institute for Physics and one of the authors of the paper.

Accelerated protons as a part of cosmic rays
After the explosion, several shock fronts propagated through the stellar wind from the Red Giant and the interstellar medium surrounding the binary system. These shock waves work like a giant power plant in which particles are accelerated to near the speed of light. The combined measurements suggest that the gamma rays emanate from energetic protons, nuclei of hydrogen atoms.

"This also makes nova outbursts a source of cosmic rays," explains David Green. "However, they tend to play the role of local heroes - meaning to only contribute to the cosmic rays in the close neighborhood. The big players for cosmic rays are supernova remnants. The shock fronts created from stellar explosions are far more violent compared to novae.

To fully understand the complicated interplay of violent events with the interstellar medium in the Milky Way, more observations like those reported now will be necessary. The MAGIC collaboration will therefore continue to look for "restless" objects in our Galaxy and beyond.

Research Report:"Proton acceleration in thermonuclear nova explosions revealed by gamma rays"


Related Links
Max Planck Institute for Physics
Stellar Chemistry, The Universe And All Within It

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



STELLAR CHEMISTRY
Webb's coldest instrument reaches operating temperature
Paris (ESA) Apr 14, 2022
With help from a cryocooler, Webb's Mid-Infrared Instrument has dropped down to just a few degrees above the lowest temperature matter can reach and is ready for calibration. The James Webb Space Telescope will see the first galaxies to form after the Big Bang, but to do that its instruments first need to get cold - really cold. On 7 April, Webb's Mid-Infrared Instrument (MIRI) - a joint development by ESA and NASA - reached its final operating temperature below 7 kelvins (minus 266 degrees Celsiu ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...