The University of Central Florida (UCF) is developing new technology that is expected to make airplane engines emission free, potentially revolutionizing the aviation industry.
UCF put together a team of experts and stakeholders to evaluate their innovation, which aims to not only make aviation fuel green, but also create engines and fueling systems that easily integrate into current airport infrastructure thus saving airports and aircraft manufacturers millions of dollars as they look to retrofit.
"We don't want to create something that will be too cumbersome and expensive to implement," says lead investigator and UCF Engineering Professor Jay Kapat. "If we want people to adopt this green tech, it needs to be scalable. To adopt hydrogen, for example, we can't expect every airport to set up large cryogenic liquid hydrogen systems like Kennedy Space Center. That's unreasonable."
With this practical approach, Kapat put together a team of experts from UCF, Georgia Tech and Purdue and with industry experts from Boeing, General Electric, ANSYS, Southwest Research Institute and the Greater Orlando Aviation Authority. The team landed a $10 million five-year NASA University Leadership Initiative grant to get the ball rolling.
"We have a good concept," Kapat says. "And by having our partners in industry we know we'll fine tune and be ready for technology transition, so we can provide a greener future for our children."
The Tech
Kapat and several of his UCF colleagues in engineering and the Florida Space Institute propose using liquid ammonia (NH3) as the fuel for aircraft which, upon combustion, will produce harmless emissions that are green while still providing enough power to keep the aircraft aloft. At high altitudes ammonia is naturally liquid thereby limiting the need for special handling. Airports and airplanes are expected to store the ammonia in fuel tanks. Ammonia is commonly used as a fertilizer and, when mixed with water, in some household cleaners.
Ammonia will be the hydrogen carrier, which will be catalytically "cracked" to release nitrogen and hydrogen. The hydrogen will be burned in the onboard combustors (inside the engine) to provide the power. Airports and aircraft are expected to store the NH3 in fuel tanks. Excess NH3 will then be used to catalytically reduce any NOx left in the exhaust converting it to nitrogen and water.
When the hydrogen is released, there will be an added bonus, Kapat explained. The conversion process also provides cooling, which can be used to keep engines from overheating and burning out. The impact may be better engine performance and efficiency. Engine exhaust heat is then converted back to electricity for onboard use, thus reducing power draw from the core engines.
The team also is developing new components for jet engines to be used in conjunction with the new fuel. The team is using the 737-8 class for a baseline as it represents nearly a quarter of all commercial aircraft, according to Boeing.
The Team
"This project would not have been possible without our internal and external partners," Kapat says.
Catalyst development and improvement of known catalysis pathways are key to the UCF effort and will be undertaken in Professor Richard Blair's laboratory at the Florida Space Institute. Engineering Professor Subith Vasu will lead the efforts to design tools, computer models, and combustion testing from his lab. Professor Kapat will lead a team that will conduct thermal management and system integration at UCF's Center for Advanced Turbomachinery and Energy Research (CATER), which he leads. UCF Chemical Safety and Security Coordinator Sandra Hick will oversee safety and occupational health issues that are central to any use of ammonia and hydrogen.
Georgia Tech will provide its aviation simulation expertise and Purdue is providing some of its unique labs and expertise in combustion and aerodynamics. Boeing is providing the integration know-how to the aircraft, and GE is contributing its knowledge of the jet engines. Other industry partners are advising on large scale simulation, the feasibility of the technology in the real world and providing a pathway for technology transition. Student training and workforce development are also key aspects of the overall project. Several UCF students working under faculty in the various labs will contribute to the research.
Related Links
University of Central Florida
Aerospace News at SpaceMart.com
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Performance analysis of evolutionary hydrogen-powered aircraft
Berlin, Germany (SPX) Jan 27, 2022
Liquid hydrogen (LH2) combustion aircraft could provide carbon-free air travel on 31%-38% of passenger kilometers flown in 2050, a new study from the International Council on Clean Transportation (ICCT) says. The study examines the performance and CO2 mitigation potential of liquid hydrogen-combustion aircraft that could enter service in 2035. It concludes that aircraft burning "green hydrogen" produced from renewable energy could enable flights up to 3400 km at reduced fuel costs compared to sust ... read more