...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Instant turn-over of magnetism by gyro motion of relativistic electrons

Instant turn-over of magnetism by gyro motion of relativistic electrons

Written by  Friday, 28 January 2022 09:57
Write a comment
Osaka, Japan (SPX) Jan 27, 2022
Magnetic fields are detected throughout the universe and widely participate in astrophysical dynamics. Various fundamental phenomena, including coronal mass ejections, solar flares, gamma-ray bursts and pulsar winds, are dominated by variations in magnetic fields. Although the mechanisms involved in the origin of magnetic fields in space are still uncertain, one of the widely accepted plau

Magnetic fields are detected throughout the universe and widely participate in astrophysical dynamics. Various fundamental phenomena, including coronal mass ejections, solar flares, gamma-ray bursts and pulsar winds, are dominated by variations in magnetic fields.

Although the mechanisms involved in the origin of magnetic fields in space are still uncertain, one of the widely accepted plausible scenarios is the turbulent dynamo, which amplifies weak magnetic fields. Recent numerical studies and experiments with long pulse laser-produced colliding plasma flows have demonstrated the capability of seed field amplification.

Coupling strong magnetic fields and high-power lasers supports cutting-edge research in laboratory astrophysics and laser-driven charged particle accelerations. With moderate laser intensities and a relatively long pulse length, mega-gauss (MG) magnetic fields in plasmas at the edges of focal spots have been achieved. Numerical and theoretical studies predict a magnetic field strength of 100 MG, while state-of-the-art experimental results are about 10 MG.

Recently, scientists at Osaka University investigated the mechanism of magnetic field growth from a weak seed field in a so-called 'microtube implosion' scenario and demonstrated a three order of magnitude amplification from MG- to GG-order magnetic fields via kinetic simulations [1, 2]. The obtained magnetic field strength is even stronger than that of pumping electromagnetic fields.

Such high magnetic fields are comparable with astrophysical bodies like neutron stars and black holes. Besides, depending on the strength of the seed magnetic field and the target structure, the polarity of the resultant magnetic field is found to turn over instantly.

The magnetic field amplification process can be separated into the following three stages. The first is laser-driven implosion, in which hot electrons and imploded ions gain energy from pumping pulses. The second is the trapping of electrons, in which the electron angular momentum is converted to induce a magnetic field. As the number of injected and trapped electrons increases, the induced magnetic field is amplified.

The third stage is dissipation of the induced magnetic field, in which the magnetic field energy is transferred to the angular momentum of the inner ions. The strength of the magnetic field decays as the ions expand.

Although the growth and amplification of the magnetic field are mainly dominated by electron dynamics, the lifetime of the magnetic field is determined by the ion motion from collapse to explosion. The size of the field is of the order of tens of microns, and its lifetime lasts hundreds of femtoseconds.

The study conducted by Yan-Jun Gu and Masakatsu Murakami has confirmed that current laser technology can realize GG-order magnetic fields based on this concept. The presented concept and theoretical scaling laws for generating GG- order magnetic fields will be beneficial to pioneering fundamental research in various regions, including materials science, quantum electrodynamics (QED), and astrophysics, as well as other cutting-edge practical applications.

Research Report: "Magnetic field amplification driven by the gyro motion of charged particles"


Related Links
Osaka University
Stellar Chemistry, The Universe And All Within It

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



STELLAR CHEMISTRY
ASU astronomer finds star fuel surrounding galaxies
Tempe AZ (SPX) Jan 20, 2022
Most galaxies, including our own, grow by accumulating new material and turning them into stars - that much is known. What has been unknown is where that new material comes from and how it flows into galaxies to create stars. In a recently published study, Arizona State University astronomer Sanchayeeta Borthakur has identified the faint fuel reservoirs that surround galaxies, and how this fuel can fall into galaxies, allowing them to form new stars and planetary systems. Her research has been pub ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...