...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Physicist solves century old problem of radiation reaction

Physicist solves century old problem of radiation reaction

Written by  Thursday, 27 January 2022 05:19
Write a comment
Lancaster UK (SPX) Jan 26, 2022
A Lancaster physicist has proposed a radical solution to the question of how a charged particle, such as an electron, responded to its own electromagnetic field. This question has challenged physicists for over 100 years but mathematical physicist Dr Jonathan Gratus has suggested an alternative approach - published in the Journal of Physics A- with controversial implications. It is w

A Lancaster physicist has proposed a radical solution to the question of how a charged particle, such as an electron, responded to its own electromagnetic field.

This question has challenged physicists for over 100 years but mathematical physicist Dr Jonathan Gratus has suggested an alternative approach - published in the Journal of Physics A- with controversial implications.

It is well established that if a point charge accelerates it produces electromagnetic radiation. This radiation has both energy and momentum, which must come from somewhere. It is usually assumed that they come from the energy and momentum of the charged particle, damping the motion.

The history of attempts to calculate this radiation reaction (also known as radiation damping) date back to Lorentz in 1892. Major contributions were then made by many well known physicists including Plank, Abraham, von Laue, Born, Schott, Pauli, Dirac and Landau. Active research continues to this day with many articles published every year.

The challenge is that according to Maxwell's equations, the electric field at the actual point where the point particle is, is infinite. Hence the force on that point particle should also be infinite.

Various methods have been used to renormalise away this infinity. This leads to the well established Lorentz-Abraham-Dirac equation.

Unfortunately, this equation has well known pathological solutions. For example, a particle obeying this equation may accelerate forever with no external force or accelerate before any force is applied. There is also the quantum version of radiation damping. Ironically, this is one of the few phenomena where the quantum version occurs at lower energies than the classical one.

Physicists are actively searching for this effect. This requires `colliding' very high energy electrons and powerful laser beams, a challenge as the biggest particle accelerators are not situated near the most powerful lasers. However, firing lasers into plasmas will produce high energy electron, which can then interact with the laser beam. This only requires a powerful laser. Current results show that quantum radiation reaction does exist.

The alternative approach is to consider many charged particles, where each particle responds to the fields of all the other charged particles, but not itself. This approach was hitherto dismissed, since it was assumed that this would not conserve energy and momentum.

However, Dr Gratus shows that this assumption is false, with the energy and momentum of one particle's radiation coming from the external fields used to accelerate it.

He said: "The controversial implications of this result is that there need not be classical radiation reaction at all. We may therefore consider the discovery of quantum radiation reaction as similar to the discovery of Pluto, which was found following predictions based on discrepancies in the motion of Neptune. Corrected calculations showed there were no discrepancies. Similarly radiation reaction was predicted, found and then shown not to be needed."

Research Report: "Maxwell-Lorentz without self-interactions: conservation of energy and momentum"


Related Links
Lancaster University
Space Technology News - Applications and Research

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TECH SPACE
Scientists invent lead-free composite shielding material for neutron and gamma-ray
Hefei, China (SPX) Jan 01, 2022
Dr. HUO Zhipeng and his student ZHAO Sheng from the Hefei Institutes of physical science (HFIPS) of the Chinese Academy of Sciences recently developed a lead-free neutron and gamma ray composite shielding material that has high shielding properties and is environmentally friendly. Their results were published on Nuclear Materials and Energy. The composite, modified-gadolinium oxide/boron carbide/high density polyethylene (Gd2O3/B4C/HDPE), was tested safe and effective to shield neutron and gamma r ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...