...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Providing GPS-quality timing accuracy without GPS

Providing GPS-quality timing accuracy without GPS

Written by  Wednesday, 26 January 2022 09:19
Write a comment
Washington DC (SPX) Jan 21, 2022
Synchronizing time in modern warfare - down to billionths and trillionths of a second - is critical for mission success. High-tech missiles, sensors, aircraft, ships, and artillery all rely on atomic clocks on GPS satellites for nanosecond timing accuracy. A timing error of just a few billionths of a second can translate to positioning being off by a meter or more. If GPS were jammed by an adver

Synchronizing time in modern warfare - down to billionths and trillionths of a second - is critical for mission success. High-tech missiles, sensors, aircraft, ships, and artillery all rely on atomic clocks on GPS satellites for nanosecond timing accuracy. A timing error of just a few billionths of a second can translate to positioning being off by a meter or more. If GPS were jammed by an adversary, time synchronization would rapidly deteriorate and threaten military operations.

To address this scenario, DARPA has announced the Robust Optical Clock Network (ROCkN) program, which aims to create optical atomic clocks with low size, weight, and power (SWaP) that yield timing accuracy and holdover better than GPS atomic clocks and can be used outside a laboratory. ROCkN will leverage DARPA-funded research over the past couple decades that has led to lab demonstration of the world's most precise optical atomic clocks.

ROCkN clocks will not be as precise as the best lab optical clocks, but they will surpass current state-of-the-art atomic clocks in both precision and holdover while maintaining low SWaP in a robust package.

"The goal is to transition optical atomic clocks from elaborate laboratory configurations to small and robust versions that can operate outside the lab," said Tatjana Curcic, program manager in DARPA's Defense Sciences Office.

"If we're successful, these optical clocks would provide a 100x increase in precision, or decrease in timing error, over existing microwave atomic clocks, and demonstrate improved holdover of nanosecond timing precision from a few hours to a month. This program could create many of the critical technologies, components, and demonstrations leading to a potential future networked clock architecture."

The program is divided into two technical areas: The first focuses on developing a robust, high-precision small portable optical clock. The second area focuses on building a larger, but still transportable, optical clock with unprecedented holdover performance.

In the first area, performers will be tasked to design a portable optical atomic clock that could fit on a fighter jet or satellite providing picosecond (trillionth of a second) accuracy for 100 seconds. The clock will need to withstand temperature, acceleration, and vibrational noise for use on board aircraft, vehicles, or satellites.

The second technical area calls for performers to develop an optical atomic clock in a transportable package that could fit on a Navy ship or in a field tent to provide GPS-equivalent, nanosecond precision for 30 days in the absence of GPS.

ROCkN is a four-year program consisting of two, two-year phases. In Phase 1, performers in both technical areas will develop a physics package to demonstrate the technology, and in Phase 2 performers will be tasked to develop fully operational clocks. At the end of the program, synchronization between stationary, mobile, and airborne clocks will be demonstrated with timing precision sufficient for 100 GHz distributed coherence.

A Proposers Day for interested proposers is scheduled for Feb. 3, 2022, via live webcast. More details and registration information are available here: https://go.usa.gov/xtBch. A Broad Agency Announcement solicitation with full program details is expected to be published on SAM.gov in the coming weeks.


Related Links
Defense Advanced Research Projects Agency
GPS Applications, Technology and Suppliers

Tweet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal

SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only



GPS NEWS
Arianespace to launch eight new Galileo satellites
Paris, France (SPX) Jan 10, 2022
Arianespace will launch the first two satellites in 2022, leading to the Full Operational Capability of Galileo open service. Then, three successive launches on Ariane 62 in 2023, 2024 and 2025, will finalize the launch of the first generation of Galileo satellites and will increase the constellation resilience. These will be the 13th to 16th Galileo missions by Arianespace, which has orbited all satellites in the constellation. The European Union Agency for the Space Programme (EUSPA) has c ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...