...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Webb telescope reaches final destination, a million miles from Earth

Webb telescope reaches final destination, a million miles from Earth

Written by  Tuesday, 25 January 2022 06:43
Write a comment
Washington (AFP) Jan 24, 2022
The James Webb Space Telescope has arrived at its cosmic parking spot a million miles away, bringing it a step closer to its mission to unravel the mysteries of the Universe, NASA said Monday. At around 2:00 pm Eastern Time (1900 GMT), the observatory fired its thrusters for five minutes to reach the so-called second Lagrange point, or L2, where it will have access to nearly half the sky at

The James Webb Space Telescope has arrived at its cosmic parking spot a million miles away, bringing it a step closer to its mission to unravel the mysteries of the Universe, NASA said Monday.

At around 2:00 pm Eastern Time (1900 GMT), the observatory fired its thrusters for five minutes to reach the so-called second Lagrange point, or L2, where it will have access to nearly half the sky at any given moment.

The delicate burn added 3.6 miles per hour (1.6 meters per second) to Webb's overall speed, just enough to bring it into a "halo" orbit around L2, 1.5 million kilometers from Earth.

"Webb, welcome home!" said NASA Administrator Bill Nelson in a statement.

Webb will begin its science mission by summer, which includes using its high resolution infrared instruments to peer back in time 13.5 billion years to the first generation of galaxies that formed after the Big Bang.

At L2, it will stay in line with the Earth as it moves around the Sun, allowing Webb's sunshield to protect its sensitive equipment from heat and light.

For the giant parasol to offer effective protection, it needs the Sun, Earth and Moon to all be in the same direction, with the cold side operating at -370 degrees Fahrenheit (-225 Celsius).

The thruster firing, known as an orbital burn, was the third such maneuver since Webb was launched on an Ariane 5 rocket on December 25.

The plan was intentional, because if Webb had gotten too much thrust from the rocket, it wouldn't be able to turn around to fly back to Earth, as that would expose its optics to the Sun, overheating and destroying them.

It was therefore decided to slightly underburn the rocket firing and use the telescope's own thrusters to make up the difference.

The burns went so well that Webb should easily be able to exceed its planned minimum life of five years, Keith Parrish Webb observatory commissioning manager told reporters on a call.

"Around 20 years, we think that's probably a good ballpark, but we're trying to refine that," he said. It's hypothetically possible, but not anticipated, that a future mission could go there and refuel it.

Webb, which is expected to cost NASA nearly $10 billion, is one of the most expensive scientific platforms ever built, comparable to the Large Hadron Collider at CERN, and its predecessor telescope, Hubble.

- Halo orbit -

But while Hubble orbits the Earth, Webb will orbit in an area of space known as a Lagrange point, where the gravitational pull from the Sun and Earth will be balanced by the centrifugal force of the rotating system.

An object at one of these five points, first theorized by Italian French mathematician Joseph-Louis Lagrange, will remain stable and not fall into the gravity well of the Sun and Earth, requiring only a little fuel for adjustments.

Webb won't sit precisely at L2, but rather go around it in a "halo" at a distance similar to that between the Earth and Moon, completing a cycle every six months.

This will allow the telescope to remain thermally stable and to generate power from its solar panels.

Previous missions to L2 include the European Space Agency's Herschel and Planck observatories, and NASA's Wilkinson Microwave Anisotropy Probe.

Webb's position will also allow continuous communications with Earth via the Deep Space Network -- three large antennas in Australia, Spain and California.

Earlier this month, NASA completed the process of unfolding Webb's massive golden mirror that will collect infrared signals from the first stars and galaxies that formed a few hundred million years after the Universe began expanding.

Visible and ultraviolet light emitted by the very first luminous objects has been stretched by the Universe's expansion, and arrives today in the form of infrared, which Webb is equipped to detect with unprecedented clarity.

Its mission also includes the study of distant planets, known as exoplanets, to determine their origin, evolution and habitability.

Next steps include aligning the telescope's optics and calibrating its scientific instruments. It is expected to transmit its first images back in June or July.


Related Links
Stellar Chemistry, The Universe And All Within It

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



STELLAR CHEMISTRY
Capturing all that glitters in galaxies with NASA's Webb
Baltimore MD (SPX) Jan 20, 2022
Spirals are some of the most captivating shapes in the universe. They appear in intricate seashells, carefully constructed spider webs, and even in the curls of ocean waves. Spirals on cosmic scales - as seen in galaxies - are even more arresting, not only for their beauty, but also for the overwhelming amount of information they contain. How do stars and star clusters form? Until recently, a complete answer used to lie out of reach, blocked by gas and dust. Within the first year of operations, NASA's J ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...