The much-anticipated launch of the James Webb Space Telescope will usher in a new era of research on our universe. Among the many researchers planning to take advantage of the data from the Hubble Space Telescope's successor is Carnegie Mellon University Associate Professor of Physics Matthew Walker, who is principal investigator of a program making use of data collected in telescope's first year of operation.
"The top-level science goal is to learn about the nature of dark matter," Walker (at right) explained. This theoretical form of matter has never been directly detected but is estimated to comprise most of the matter in the universe. Various theories have arisen about the form dark matter takes, with the currently dominant cold dark matter theory predicting that it exists in clumps called halos with small basic units, as opposed to galaxy-sized agglomerations.
"One of the key predictions we're trying to test of cold dark matter is the existence of these so-called sub-galactic dark matter halos," Walker said. "That's something people have been trying to test for decades."
These lower-mass collections of dark matter don't have stars in them, making them difficult to detect and observe. Two tests have been devised so far to seek out sub-galactic dark matter halos, Walker explained, but both have so far produced inconclusive results.
"Here, we're introducing a new test," Walker said. "We're looking for perturbations from these sub-galactic dark matter halos on very fragile gravitational systems."
The most fragile gravitational systems that can be observed are "wide" binary stars - pairs of stars orbiting each other but separated by more than 1,000 times the distance between the sun and Earth, making the gravitational forces between them very weak. Walker is particularly focused on looking for wide binary star systems, where two stars would be orbiting each other at distances more than 1,000 times the space between the Earth and the sun, making the gravitational forces between them very weak.
"That means if a sub-galactic dark matter halo zips through the neighborhood, its gravitational effects can be more than sufficient to destroy this wide binary system," Walker said.
Walker and his team are setting out to examine the data from the James Webb Space Telescope and see if any wide binary star systems exist in dwarf galaxies, which are expected to be dense in dark matter. If they're found, then their very existence would make the cold dark matter theory more unlikely.
"Nobody has been able to say one way or another whether wide binaries exist in the dwarf galaxies for lack of adequate instrumentation," Walker said. "That is where the James Webb Space Telescope will open a new window."
Related Links
Carnegie Mellon University
Stellar Chemistry, The Universe And All Within It
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Kerstin Perez is searching the cosmos for signs of dark matter
Boston MA (SPX) Jan 04, 2022
Kerstin Perez is searching for imprints of dark matter. The invisible substance embodies 84 percent of the matter in the universe and is thought to be a powerful cosmic glue, keeping whole galaxies from spinning apart. And yet, the particles themselves leave barely a trace on ordinary matter, thwarting all efforts at detection thus far. Perez, a particle physicist at MIT, is hoping that a high-altitude balloon experiment, to be launched into the Antarctic stratosphere in late 2022, will catch indi ... read more