For the first time ever we bounced a LoRa message off the moon on October 5th 2021, using the Dwingeloo radio telescope. This first was achieved by a team consisting of Jan van Muijlwijk (CAMRAS, PA3FXB), Tammo Jan Dijkema (CAMRAS), Frank Zeppenfeldt (ESA, PD0AP) and Thomas Telkamp (Lacuna Space, PA8Z). The signal traveled an amazing distance of 730,360 km, which to our knowledge is the furthest distance a LoRa modulated message has ever traveled.
For a short moment the entire message was in space, in between the Earth and the Moon. We transmitted the signal with a Semtech LR1110 RF transceiver chip (in the 430-440 Mhz amateur band), amplified to 350 Watt, using the 25 meter dish of the telescope. Then, 2.44 seconds later, it was received by the same chip. One of the messages even contained a full LoRaWAN frame.
Nicolas Sornin, co-inventor of LoRa, told us: "This is a fantastic experiment, I had never dreamed that one day a LoRa message would travel all the way to the moon and back! I am impressed by the quality of the data captured, this dataset is going to become a classic for radiocommunications and signal processing students. A big thumbs up to the team and CAMRAS foundation for making this possible".
The Dwingeloo radio telescope, operated by the CAMRAS foundation, has a history of being used in amateur radio experiments and is now often used for moon bounces, but this was the first time a data message was bounced using a small RF chip. This telescope was commissioned in 1956, and played an important role in the early exploration of the structure of the Milky Way using 21 cm hydrogen radiation.
With the LR1110 chip we also measured the round trip time of the message, as well as the frequency offset due to Doppler caused by the relative motion of the Earth and the Moon. From the round trip time we calculated the distance to the moon. Both distance and frequency offset matched very well with predicted values calculated using NASA's JPL Horizons ephemeris system.
In addition to the LoRa chips, we used an SDR (Software Defined Radio) to capture both the transmitted and received signal for further analysis. These measurements together with analysis notebooks will be published as open data. As a preview, this is a Delay-Doppler plot of the received signal, essentially showing a radar image of the moon, the ultimate example of joint communications and sensing.
Related Links
Lacuna Space
Space Technology News - Applications and Research
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
AiRANACULUS awarded Phase II NASA contract for Advanced Space Communications System
Chelmsford, MA (SPX) Oct 28, 2021
AiRANACULUS, a private, Massachusetts-based technology company providing early stage research, development, prototyping and consulting services, announced it has been awarded a Phase II NASA Small Business Innovation Research contract for development of an advanced space communications system to support upcoming missions to the Moon and Mars. Under the new contract, AiRANACULUS will demonstrate and deliver an intelligent network platform to increase performance, efficiency and reliability of missi ... read more