A team of physicists has discovered how DNA molecules self-organize into adhesive patches between particles in response to assembly instructions. Its findings offer a "proof of concept" for an innovative way to produce materials with a well-defined connectivity between the particles.
The work is reported in Proceedings of the National Academy of Sciences.
"We show that one can program particles to make tailored structures with customized properties," explains Jasna Brujic, a professor in New York University's Department of Physics and one of the researchers. "While cranes, drills, and hammers must be controlled by humans in constructing buildings, this work reveals how one can use physics to make smart materials that 'know' how to assemble themselves."
Scientists have long sought a means for molecules to self-assemble and have achieved breakthroughs on many fronts. However, less developed are measures in which these tiny particles self-assemble with a preprogrammed number of bonds.
To address this, Brujic and her colleagues, Angus McMullen, a postdoctoral researcher in NYU's Department of Physics, and Sascha Hilgenfeldt, a professor of mechanical science and engineering at the University of Illinois, Urbana-Champaign, ran a series of experiments to capture - and manipulate - the behavior of DNA molecules on particle surfaces.
Operating at a micron level - with particles 1/25th the size of a speck of dust - they submerged tiny droplets into a liquid solution. Attached to these droplets were "DNA linkers" - molecular tools possessing "sticky ends" that allow for mixing and matching to form an array of structures desired by the researchers.
"The beauty of this procedure is we can program the properties of a specific material, such that it could be elastic or brittle, or even have self-healing powers once broken, since the bonds can be made and broken reversibly," observes Brujic. "Creators could decide to put in five particles that stick to only one other one, 10 that stick to two, and 20 that stick to three, or any other combination. This would allow you to build materials with specific topologies or architectures."
Research Report: "DNA self-organization controls valence in programmable colloid design"
Related Links
New York University
Understanding Time and Space
| Tweet |
Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Monthly Supporter
$5+ Billed Monthly | SpaceDaily Contributor
$5 Billed Once credit card or paypal |
Getting up to speed on the proton
Lemont, IL (SPX) Oct 28, 2021
Scientists develop groundbreaking theory for calculating what's happening inside a proton travelling at the speed of light. For more than 2,000 years, scientists thought the atom was the smallest particle possible. Then, they discovered that it has a nucleus made up of protons and neutrons surrounded by electrons. After that, they found that the protons and neutrons themselves have a complex inner world full of quarks and antiquarks held together by a superglue-like force created by gluons. "Proto ... read more