...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Bare Super-Earths offer clues to evolution of hot atmospheres

Bare Super-Earths offer clues to evolution of hot atmospheres

Written by  Wednesday, 29 September 2021 06:21
Write a comment
Tokyo, Japan (SPX) Sep 29, 2021
A group of astronomers from the Astrobiology Center, the National Astronomical Observatory of Japan, the University of Tokyo, and other institutes, discovered two rocky super-Earth exoplanets lacking thick primordial atmospheres in very close orbits around two different red dwarf stars. These planets provide a chance to investigate the evolution of the atmospheres of hot rocky planets. In

A group of astronomers from the Astrobiology Center, the National Astronomical Observatory of Japan, the University of Tokyo, and other institutes, discovered two rocky super-Earth exoplanets lacking thick primordial atmospheres in very close orbits around two different red dwarf stars. These planets provide a chance to investigate the evolution of the atmospheres of hot rocky planets.

In this research, the Subaru Telescope and other telescopes conducted follow-up observations of two planet candidates (TOI-1634b and TOI-1685b, originally identified by NASA's TESS spacecraft) around red dwarf stars. Both candidates are in the constellation Perseus, and about the same distance from Earth; TOI-1634b is 114 light-years away and TOI-1685b is 122 light-years away. The team confirmed that the candidates are rocky super-Earths in ultra-short-period orbits taking less than 24 hours to complete a trip around their host stars.

The observations by the InfraRed Doppler (IRD) spectrograph mounted on the Subaru Telescope also measured the masses of these planets and provided insight into the internal and atmospheric structures of these planets. The results showed that the planets are "bare," meaning that they lack primordial thick hydrogen-helium atmospheres, possibly due to interactions with the extremely close host stars.

This makes room for a secondary atmosphere composed of gases released from within the planet. The results also show that TOI-1634b is one of the largest (1.8 Earth radii) and most massive (10 Earth masses) planets among the known ultra-short period rocky planets. These new planets offer excellent opportunities to study what kind of atmospheres, if any, can develop on ultra-short-period rocky planets, and provide clues to help understand how such unusual planets are formed.

Further observations by future telescopes including the James Webb Space Telescope aim to detect and characterize the atmospheres of these planets. Dr. Teruyuki Hirano, the lead author of this research, says "Our project to intensively follow-up planetary candidates identified by TESS with the Subaru Telescope is still in progress, and many unusual planets will be confirmed in the next few years."

Research Report: "Two Bright M Dwarfs Hosting Ultra-Short-Period Super-Earths with Earth-like Compositions"


Related Links
Subaru Telescope
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
Webb Telescope to explore forming planetary systems
Baltimore MD (SPX) Sep 24, 2021
Planetary systems take millions of years to form, which introduces quite a challenge for astronomers. How do you identify which stage they are in, or categorize them? The best approach is to look at lots of examples and keep adding to the data we have - and NASA's upcoming James Webb Space Telescope will be able to provide an infrared inventory. Researchers using Webb will observe 17 actively forming planetary systems. These particular systems were previously surveyed by the Atacama Large Millimet ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...