...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • The Biomass satellite and disappearing 'football fields'

The Biomass satellite and disappearing 'football fields'

Written by  Friday, 24 September 2021 08:37
Write a comment
Toulouse, France (SPX) Sep 24, 2021
Forests, especially tropical rainforests, are guardians against climate change. But our forests are burning. They are withering and dwindling. Our guardians are themselves threatened by climate change. A new European Space Agency (ESA) satellite mission, currently being built by Airbus, is set to investigate exactly how our forests are faring. The name says it all: Biomass. Our forests and

Forests, especially tropical rainforests, are guardians against climate change. But our forests are burning. They are withering and dwindling. Our guardians are themselves threatened by climate change. A new European Space Agency (ESA) satellite mission, currently being built by Airbus, is set to investigate exactly how our forests are faring. The name says it all: Biomass.

Our forests and global climate are closely linked. Forests are huge carbon stores. They cover around one third of the world's surface, but they store about half of the carbon bound on Earth. With their needles and leaves, they filter the carbon dioxide in the air that is so harmful to the environment and split it into oxygen and carbon. They release vital oxygen back into the air and retain the carbon.

Forests also influence evaporation, water cycles and thus the weather. Interconnected forest areas function like huge air-conditioning systems. Tropical forests also have a cooling effect on the climate. However, if temperatures rise worldwide, tropical forests may dry out and die. If the forests die, the carbon stored in them is released and their important climate-regulating and cooling function is lost.

Carbon is stored in many different types of forests, such as boreal forests, tropical rainforests, mangroves, urban forests and plantations. These forests differ in their ability to store carbon and produce biomass. But experts estimate that up to 75 % of the world's biomass is found in forests. And the forests are shrinking. On an unimaginable scale: since 2010, 11 million hectares per year, or the equivalent of roughly 30 football fields per minute!

ESA's Biomass environment and climate mission will therefore monitor tropical rainforests. Its main scientific objectives include determining the distribution of above-ground biomass in the rainforests and measuring the annual changes in this mass.

Biomass and vegetation height are recorded at a resolution of 200 metres, intrusions in the forest system, such as clear-cutting, at a resolution of 50 metres. The spacecraft will carry the first space-borne P-band radar to deliver exceptionally accurate maps of tropical, temperate and boreal forest biomass that cannot be obtained on the ground.

Biomass will achieve this using a 'synthetic aperture radar' to send down signals from orbit and record the resulting backscatter, building up maps of tree height and volume. To see through leafy treetops to the trees themselves, Biomass will employ long-wavelength 'P-band' radar, which has never previously flown in space. It will have its signals amplified to travel down from a 600-km altitude orbit down to Earth and back.

The mission will collect frequent information on global forests to determine the distribution of their above-ground biomass and measure annual changes. This unique satellite will provide a full global map of forest biomass stocks at a spatial resolution in the order of 4 ha, once every year over the life of the five-year mission, providing an entirely new dataset for climatologists to work with.

These maps will greatly improve on existing forest inventories and give vastly improved information for managing Earth's forest resources. The data collected by Biomass will also capture subsurface geological structures in desert areas and the topography of surfaces hidden under dense vegetation. Observations from this new mission will also lead to better insight into rates of habitat loss and, therefore, the effect this may have on biodiversity in the forest environment.

Famous author Ernest Hemingway said: "Earth is a fine place and worth fighting for." So let's get Biomass into orbit to monitor it, learn about it and - fight for it.


Related Links
Airbus
Earth Observation News - Suppiliers, Technology and Application

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EARTH OBSERVATION
Earth from Space: Maharloo Lake
Paris (ESA) Sep 21, 2021
Maharloo Lake, a seasonal salt lake in Iran, is featured in this image captured by the Copernicus Sentinel-2 mission. Maharloo sits at an altitude of around 1400 m above sea level and is located around 27 km southeast of Shiraz, in southwest Iran. Yearly evaporation in the desert region is much greater than the yearly rainfall, meaning the lake is often very dry. Owing to the high evaporation rate, the lake's bed has been covered by salt over time. This increased salinity in the lake's water ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...