...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • X-ray magnifying glass enhances view of distant black holes

X-ray magnifying glass enhances view of distant black holes

Written by  Wednesday, 01 September 2021 03:30
Write a comment
Boston MA (SPX) Sep 01, 2021
A new technique using NASA's Chandra X-ray Observatory has allowed astronomers to obtain an unprecedented look at a black hole system in the early Universe, as reported in our latest press release. This is providing a way for astronomers to look at faint and distant X-ray objects in more detail than had previously been possible. Astronomers used an alignment in space that shows "gravitatio

A new technique using NASA's Chandra X-ray Observatory has allowed astronomers to obtain an unprecedented look at a black hole system in the early Universe, as reported in our latest press release. This is providing a way for astronomers to look at faint and distant X-ray objects in more detail than had previously been possible.

Astronomers used an alignment in space that shows "gravitational lensing" of light from two objects that are nearly 12 billion light years away. An artist's illustration in the main part of this graphic shows how the paths of light from these distant objects are bent and amplified by a galaxy along the line of sight between Earth and the objects.

The objects in this latest Chandra study are part of a system called MG B2016+112. The X-rays detected by Chandra were emitted by this system when the Universe was only 2 billion years old compared to its current age of nearly 14 billion years.

Previous studies of radio emission from MG B2016+112 suggested that the system consisted of two separate supermassive black holes, each of which may also be producing a jet. Using a gravitational lensing model based on the radio data, Schwartz and his colleagues concluded that the three X-ray sources they detected from the MG B2016+112 system must have resulted from the lensing of two distinct objects.

The X-ray light from one of the objects on the left (purple) has been warped by the gravity of the intervening galaxy to produce two beams and X-ray sources ("A" and "B" in a labeled version) detected in the Chandra image, which is represented by the dashed square on the right. The X-ray light from the fainter object (blue) produces an X-ray source ("C") that has been amplified by the galaxy to be as much as 300 times brighter than it would have been without the lensing. The Chandra image is shown in the inset.

These two X-ray-emitting objects are likely a pair of growing supermassive black holes or a growing supermassive black hole and a jet. Previous Chandra measurements of pairs or trios of growing supermassive black holes have generally involved objects much closer to Earth, or with much larger separations between the objects.

Research Report: Resolving Complex Inner X-ray Structure of the Gravitationaly Lensed AGN MGB2016+112


Related Links
NASA's Chandra X-ray Observatory
Understanding Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TIME AND SPACE
Size of supermassive black hole divulged by eating pattern
Washington DC (UPI) Aug 12, 2021
Astronomers have finally linked the size of a supermassive black hole to the spectral patterns generated by its eating habits. Most nearby supermassive black holes are dormant. These long-sated, sleeping giants ate up their supply of gas and dust many millions of years ago, leaving them dark and quiet. To identify dormant black holes, scientists must measure their gravitational influences on nearby stars and gas clouds. In the distant cosmos, however, scientists can observe superm ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...