Eastern. The Dragon separated from the rocket’s super stage 12 minutes after liftoff.
The Dragon, flying a mission designated CRS-22 or SpX-22, is scheduled to dock with the ISS at about 5 a.m. Eastern June 5. This is the second flight of the new version of the cargo Dragon, which is similar to the design used for Crew Dragon missions but lacks the crewed version’s SuperDraco abort thrusters.
The Dragon is carrying 1,948 kilograms of pressurized cargo inside of the spacecraft, and an additional 1,380 kilograms of unpressurized cargo stored in its trunk section. It will return to Earth in July carrying about 2,400 kilograms of experiments and equipment.
The largest item the Dragon is transporting to the station is a pair of new solar arrays called the ISS Roll-out Solar Array (iROSA), developed by Redwire for ISS prime contractor Boeing. The arrays are stored in the Dragon’s trunk rolled up, and will be attached to the station’s truss and rolled out. Astronauts Shane Kimbrough and Thomas Pesquet are currently scheduled to conduct spacewalks on June 16 and 20 to install those arrays.
The arrays are the first two of six that will be installed on the station, overlaying part of the existing arrays. The higher efficiency of the new arrays means that, even by shadowing the existing arrays, they will still generate more power for the station.
“The new solar arrays bring us back to a power generation that was the same as we had when we launched the older solar arrays,” said Joel Montalbano, NASA ISS program manager, during a June 2 briefing. “It allows us to continue the science and research programs we have on board.” He said that the new arrays will also provide enough power to support a commercial module being developed by Axiom Space that will be added to the station as soon as 2024.
The key technology for the iROSA arrays was tested on the ISS in 2017 as a tech demo, noted Jennifer Buchli, deputy chief scientist for the ISS program at NASA, at the briefing. Technology demonstrations being brought to the station on this Dragon include a portable ultrasound device for medical care and a European Space Agency experiment to test the use of virtual reality for operating robotic arms and spacecraft.
This Dragon is also carrying experiments such as gene studies of tardigrades, also known as “water bears,” microscopic creatures able to survive extreme environments, as well as studying ways to grow cotton that uses less water.
This launch was the first flight of a new booster, which made a successful droneship landing in the Atlantic Ocean. This was the first SpaceX launch to use a new booster since November 2020. “We’re actually surprised when we get to a mission like today’s where we’re flying a new booster,” said Sarah Walker, director of Dragon mission management at SpaceX, at the preflight briefing.
Despite flying a new booster, SpaceX did not conduct a static-fire test of the stage at the launch pad prior to this launch. Walker said that SpaceX has been moving away from doing such tests before every launch, something it had done for years, as it gains experience with the Falcon 9. The stage, she added, did perform a static-fire test at SpaceX’s McGregor, Texas, test site before being shipped to Florida.
“SpaceX and NASA worked together to determine that an additional static fire at the pad wasn’t necessary this mission,” she said. “We certainly make sure that we do all the necessary tests to make sure that the vehicle is ready for its journey.”
At neighboring Space Launch Complex 40, SpaceX did perform a static-fire test of another Falcon 9 first stage in the early morning hours of June 3. That rocket is scheduled to launch the SXM-8 satellite for SiriusXM Satellite Radio June 6.