A major benefit of increasingly advanced automation and artificial intelligence technology is decreased workload and greater safety for humans - whether it's driving a vehicle, piloting an airplane, or patrolling a dangerous street in a deployed location with the aid of autonomous ground and airborne squad mates. But when there's a technology glitch and machines don't function as designed, human partners in human-machine teams may quickly become overwhelmed trying to understand their environment at a critical moment - especially when they've become accustomed to and reliant on the machine's capabilities.
Without situational awareness of the system and environment, the human team member may be unable to adapt, reducing safety and threatening mission success. This reality played out in crashes of modern jetliners in recent years killing hundreds, because advanced automated systems failed in flight and pilots weren't able to assess the situation and respond appropriately in time. Such examples underscore the need to design human-machine interfaces (HMIs) that allow humans to maintain situational awareness of highly automated and autonomous systems so that they can adapt in the face of unforeseen circumstances.
DARPA has announced its Enhancing Design for Graceful Extensibility (EDGE) program, which aims to create a suite of HMI design tools to be integrated into systems design processes. By prioritizing and orienting these tools towards quantifying, supporting, and testing situational awareness - rather than on cognitive load at the expense of situational awareness - EDGE will help create HMI systems that allow operators to not just monitor autonomous systems but also adapt their use to meet the needs of unanticipated situations.
"As highly-automated machines and AI-enabled systems have become more and more complicated, the trend in HMI development has been to reduce cognitive workload on humans as much as possible. Unfortunately, the easiest way to do this is by limiting information transfer," said Bart Russell, EDGE program manager in DARPA's Defense Sciences Office.
"Reducing workload is important, because an overloaded person cannot make good decisions. But limiting information erodes situational awareness, making it difficult for human operators to know how to adapt when the AI doesn't function as designed. Current AI systems tend to be brittle - they don't handle unexpected situations well - and warfare is defined by the unexpected."
The EDGE design tools will focus on supporting the ability of operators of autonomous systems, who are not necessarily data scientists or AI experts, to understand enough about the abstract functioning of a system that they can adapt with it when they encounter off-nominal situations. Designers will be able to leverage EDGE design tools to create HMIs that help operators understand an AI system's processes, or how it works; the system's status against its performance envelope (i.e., if it's in its "comfort zone," or near the edges of its speed, range, etc.); and the environmental context, which is often where the most unanticipated elements come in.
"We need HMIs that do a better job of exchanging information between the system and the human," Russell said.
"There's a lot of work right now focused on designing machines to understand human intentions, called AI Theory of Mind. I'm interested in helping humans better understand the complex systems they're teamed with. EDGE is specifically focused on the Observe, Orient, Decide and less on the Act in the OODA loop. It's not about how fast you press a button, or the ergonomics of your cockpit, it's about how well you perceive the information that's coming to you and does that help you develop sufficient understanding of systems processes, status against the machine's performance envelope, and the context in which it's operating to still complete a mission despite off-nominal conditions."
The suite of EDGE HMI design tools will include models that quantify situational awareness demands to enable detailed co-design between software engineers and HMI designers; composable design methods to speed and mature design implementation; and an HMI breadboard for realistic test and verification early in the design process.
A webinar Proposers Day for interested proposers is scheduled for June 1, 2021. More information and details about registration are available here. A Broad Agency Announcement (BAA) solicitation is expected be available on beta.SAM.gov in the coming weeks.
Related Links
Enabling Human Control of Autonomous Partners
All about the robots on Earth and beyond!
| Tweet |
Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain. With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords. Our news coverage takes time and effort to publish 365 days a year. If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution. | ||
SpaceDaily Contributor
$5 Billed Once credit card or paypal | SpaceDaily Monthly Supporter
$5 Billed Monthly paypal only |
Air Force unveils exoskeleton to aid aerial ports in lifting
Washington DC (UPI) May 19, 2021
An exoskeleton, worn by U.S. Air Force aerial porters to assist in lifting objects with reduced strain, will make its debut at Travis Air Force Base, Calif., the branch announced on Wednesday. The device, designed by Arizona State University and the Air Force Life Cycle Management and Air Mobility Command, will be used in an official capacity for the first time this week. The Aerial Port Exoskeleton, still in its prototype phase of development, is an element of the uniform worn by those ... read more