...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Researchers identify five double star systems potentially suitable for life

Researchers identify five double star systems potentially suitable for life

Written by  Tuesday, 20 April 2021 11:19
Write a comment
New York NY (SPX) Apr 16, 2021
Almost half a century ago, the creators of Star Wars imagined a life-sustaining planet, Tatooine, orbiting a pair of stars. Now, scientists have found new evidence that five known systems with multiple stars, Kepler-34, -35, -38, -64 and -413, are possible candidates for supporting life. A newly developed mathematical framework allowed researchers at New York University Abu Dhabi and the U

Almost half a century ago, the creators of Star Wars imagined a life-sustaining planet, Tatooine, orbiting a pair of stars. Now, scientists have found new evidence that five known systems with multiple stars, Kepler-34, -35, -38, -64 and -413, are possible candidates for supporting life.

A newly developed mathematical framework allowed researchers at New York University Abu Dhabi and the University of Washington to show that those systems - between 2764 and 5933 light years from Earth, in the constellations Lyra and Cygnus - support a permanent "Habitable Zone", a region around stars in which liquid water could persist on the surface of any as yet undiscovered Earth-like planets.

Of these systems, Kepler-64 is known to have at least four stars orbiting one another at its center, while the others have two stars. All are known to have at least one giant planet the size of Neptune or greater. This study, published in Frontiers in Astronomy and Space Sciences, is proof-of-principle that the presence of giant planets in binary systems does not preclude the existence of potentially life-supporting worlds.

"Life is far most likely to evolve on planets located within their system's Habitable Zone, just like Earth. Here we investigate whether a Habitable Zone exists within nine known systems with two or more stars orbited by giant planets. We show for the first time that Kepler-34, -35, -64, -413 and especially Kepler-38 are suitable for hosting Earth-like worlds with oceans," says corresponding author Dr Nikolaos Georgakarakos, a research associate from the Division of Science at New York University Abu Dhabi.

The scientific consensus is that the majority of stars host planets. Ever since 1992, exoplanets have been discovered at an accelerating pace: 4375 have been confirmed so far, of which 2662 were first detected by NASA's Kepler space telescope during its 2009-2018 mission to survey the Milky Way. Further exoplanets have been found by NASA's TESS telescope and missions from other agencies, while the European Space Agency is due to launch its PLATO space craft to search for exoplanets by 2026.

Twin stars and giant planets pose special conditions on life
Twelve of the exoplanets discovered by Kepler are "circumbinary", that is, orbiting a close pair of stars. Binary systems are common, estimated to represent between half and three quarters of all star systems. So far, only giant exoplanets have been discovered in binary systems, but it is likely that smaller Earth-like planets and moons have simply escaped detection.

Gravitational interactions within multi-star systems, especially if they contain other large bodies such as giant planets, are expected to make conditions more hostile to the origin and survival of life: for example, planets might crash into the stars or escape from orbit, while those Earth-like exoplanets that survive will develop elliptical orbits, experiencing strong cyclical changes in the intensity and spectrum of radiation.

"We've known for a while that binary star systems without giant planets have the potential to harbor habitable worlds. What we have shown here is that in a large fraction of those systems Earth-like planets can remain habitable even in the presence of giant planets," says coauthor Prof Ian Dobbs-Dixon, likewise at New York University Abu Dhabi.

Georgakarakos et al. here build on previous research to predict the existence, location, and extent of the permanent Habitable Zone in binary systems with giant planets. They first derive equations that take into account the class, mass, luminosity, and spectral energy distribution of the stars; the added gravitational effect of the giant planet; the eccentricity (i.e. degree of ellipticity of the orbit), semi-major axis, and period of the hypothetical Earth-like planet's orbit; the dynamics of the intensity and spectrum of the stellar radiation that falls upon its atmosphere; and its "climate inertia", that is, the speed at which the atmosphere responds to changes in irradiation. T

hey then look at nine known binary star systems with giant planets, all discovered by the Kepler telescope, to determine whether Habitable Zones exist in them and are "quiet enough" to harbor potentially life sustaining worlds.

The authors show for the first time that permanent Habitable Zones exist in Kepler-34, -35, -38, -64, and -413. Those zones are between 0.4-1.5 Astronomical Units (au) wide beginning at distances between 0.6-2 au from the center of mass of the binary stars.

Not all systems with circumbinary giant planets are suitable
"In contrast the extent of the Habitable Zones in two further binary systems, Kepler-453 and -1661, is roughly half the expected size, because the giant planets in those systems would destabilize the orbits of additional habitable worlds. For the same reason Kepler-16 and -1647 cannot host additional habitable planets at all. Of course, there is the possibility that life exists outside the habitable zone or on moons orbiting the giant planets themselves, but that may be less desirable real-estate for us," says coauthor Dr Siegfried Eggl at the University of Washington.

"Our best candidate for hosting a world that is potentially habitable is the binary system Kepler-38, approximately 3970 light years from Earth, and known to contain a Neptune-sized planet," says Georgakarakos.

"Our study confirms that even binary star systems with giant planets are hot targets in the search for Earth 2.0. Watch out Tatooine, we are coming!"

See original article here


Related Links
Frontiers in Astronomy and Space Sciences
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
Study warns of 'oxygen false positives' in search for signs of life on other planets
Santa Cruz CA (SPX) Apr 14, 2021
In the search for life on other planets, the presence of oxygen in a planet's atmosphere is one potential sign of biological activity that might be detected by future telescopes. A new study, however, describes several scenarios in which a lifeless rocky planet around a sun-like star could evolve to have oxygen in its atmosphere. The new findings, published April 13 in AGU Advances, highlight the need for next-generation telescopes that are capable of characterizing planetary environments and sear ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...