...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Skoltech team used mass spectrometry to study composition of meteorites

Skoltech team used mass spectrometry to study composition of meteorites

Written by  Monday, 05 April 2021 05:36
Write a comment
Moscow, Russia (SPX) Apr 06, 2021
Scientists from Russia and Germany studied the molecular composition of carbonaceous chondrites - the insoluble organic matter of the Murchison and Allende meteorites - in an attempt to identify their origin. Ultra-high resolution mass spectrometry revealed a wide diversity of chemical compositions and unexpected similarities between meteorites from different groups. The research was published i

Scientists from Russia and Germany studied the molecular composition of carbonaceous chondrites - the insoluble organic matter of the Murchison and Allende meteorites - in an attempt to identify their origin. Ultra-high resolution mass spectrometry revealed a wide diversity of chemical compositions and unexpected similarities between meteorites from different groups. The research was published in the Scientific Reports.

Carbonaceous chondrites contain nearly the entire spectrum of organic molecules encountered on Earth, including nucleic acids which might have played a pivotal role in the origin of life. Since the majority of modern meteorites are of nearly the same age as the Earth, their composition should be similar to that of meteorites that bombarded the Earth's surface in ancient times. Just like comets, they can be considered a source of organic compounds which most likely formed the core of the Earth's biosphere.

According to Skoltech Senior Research Scientist Alexander Zherebker, "the geological history of the Earth is a continuous process that involves division and transformation (biological or otherwise) of the Solar System's primary matter. What remains of that matter ends up on Earth in the form of chondrites.

"However, two centuries of research on the organic matter of meteorites fall short of a full picture of its molecular composition: for instance, there is no systematic data on insoluble organic matter of meteorites which may account for up to 70% of all organic carbon in the samples. Presumably, these substances have much higher molecular complexity than suggested by research focusing on particular classes of organic compounds."

Scientists from Skoltech, Moscow State University, Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, and the Rostock Institute (Germany) applied ultra-high resolution mass spectrometry methods to study the composition of meteorites.

The Skoltech team included researchers from the Mass Spectrometry Laboratory at the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE): Alexander Zherebker, Yury Kostyukevich, Alexey Kononikhin, and Oleg Kharybin. The research was led by Skoltech Professor Evgeny Nikolaev, Corresponding Member of RAS, Doctor of Physics and Mathematics, Head of the Mass Spectrometry Laboratory.

The team discovered an amazing molecular diversity in the insoluble organic matter of carbonaceous chondrites. "Considering that meteorites and the Earth are of similar age, we can argue that the organic matter of carbonaceous chondrites could have been the source of chemical compounds which served as building blocks for biological molecules and life on Earth.

However, meteorite composition has nothing to do with living matter, which is evidenced, for example, by totally different oxidative profiles of extraterrestrial organic matter and a similar fraction of coal of biological origin. That is to say, meteorites showed no signs of "selection" of compounds," Alexander Zherebker comments.

The analysis of carbonaceous chondrite extracts by isotopic exchange mass spectrometry revealed the presence of sulfur-containing compounds with all possible oxidation states from -2 to +6, which was in no way related to the sample's thermal history, as previously thought. The relative content of these compounds was the only difference, as confirmed by the Murchison and Allende samples.

The team's findings suggest that the precursors which created different celestial bodies produced similar organic matter which later transformed in various ways, depending on the environment and its various effects.

Research paper


Related Links
Skolkovo Institute Of Science And Technology
Asteroid and Comet Mission News, Science and Technology

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



IRON AND ICE
New study discovers ancient meteoritic impact over Antarctica 430,000 years ago
Kent UK (SPX) Apr 01, 2021
A research team of international space scientists, led by Dr Matthias van Ginneken from the University of Kent's School of Physical Sciences, has found new evidence of a low-altitude meteoritic touchdown event reaching the Antarctic ice sheet 430,000 years ago. Extra-terrestrial particles (condensation spherules) recovered on the summit of Walnumfjellet (WN) within the Sor Rondane Mountains, Queen Maud Land, East Antarctica, indicate an unusual touchdown event where a jet of melted and vaporised m ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...