...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Keeping track of spacecraft as Earth's water alters its spin

Keeping track of spacecraft as Earth's water alters its spin

Written by  Monday, 22 March 2021 06:53
Write a comment
Darmstadt, Germany (SPX) Mar 23, 2021
External gravitational forces, predominantly from the Sun and Moon, are constantly and predictably acting on our planet. While the Sun's enormous gravity keeps Earth in orbit, the gentle tug of the Moon has, over billions of years, quite dramatically slowed its spin, increasing the length of a day on Earth. When the Earth first formed, a day was somewhere between six and eight hours long a

External gravitational forces, predominantly from the Sun and Moon, are constantly and predictably acting on our planet. While the Sun's enormous gravity keeps Earth in orbit, the gentle tug of the Moon has, over billions of years, quite dramatically slowed its spin, increasing the length of a day on Earth.

When the Earth first formed, a day was somewhere between six and eight hours long and a year would have consisted of more than 1000 sunrises and sunsets.

Closer to home, there are forces at play that have much more rapid and unpredictable effects. Earthquakes, atmospheric winds, ocean currents, and remarkably even human activity itself, all act often and unpredictably to redistribute mass around the planet, altering the speed of Earth's spin and the orientation of its spin axis.

Conservation of momentum
The 'conservation of angular momentum' is a law of physics that explains why a figure skater spinning with her arms out, can suddenly speed herself up by pulling in her arms towards her body.

Earth's spin too is affected by the distribution of weight around the planet. Earthquakes, remarkably, speed up the spin of our planet in an instant, by rearranging matter through the crust and upper mantle, increasing in a small but not insignificant way the length of the day.

In 2011, a magnitude 9.0 earthquake struck Japan which tragically took thousands of lives and created untold damage. Lasting six minutes, it also shortened the length of the day by 1.8 microseconds (one microsecond = one millionth of a second) and shifted the position of Earth's 'figure axis' - an imaginary line around which the world's mass is balanced - by about 17 cm. (The figure axis is Earth's axis of mass balance, while the spin axis wobbles around it.)

Much larger effects are also underway caused by atmospheric winds and ocean currents, as well as the melting of glaciers and the icecaps. As ice melts or breaks off into the ocean, sea levels rise and Earth's mass is redistributed so it is closer to this central axis, shortening the length of the day.

Such changes are nothing to worry about, unnoticeable to our day-to-day lives. But when it comes to flying spacecraft across deep space, or keeping in sync with satellites in orbit, these tiny changes can mean the difference between finding and losing your mission.

Holding on to ESA missions
To fly ESA missions, the Agency is dependent on what are called Earth Orientation Parameters, EOP, which describe the irregularities in the rotation of the planet. If you dont know them, you have a real problem.

"Our ground stations are in communication with interplanetary spacecraft millions of kilometres away. They need to be pointed with extreme accuracy to target these relatively tiny objects," explains Werner Enderle, Head of ESA's Navigation Support Office based at the Agency's ESOC Operations Centre in Darmstadt, Germany.

"One degree on Earth equates to thousands of kilometres in space, so if you don't have accurate values for Earth's orientation, you can be off by a long way."

Getting these parameters requires a huge amount of work analysing the cumulative effects of the weather, climate change and geological activity. Because these systems are so complex, we can currently calculate the changes in Earth's orientation on relatively short timescales, weeks and months ahead.

ESA determines Earth's orientation
Currently, these vital parameters are provided by the United States Naval Observatory (UNSO), based on contributions from Institutions around the world including ESA. However, ESA is working on determining its own EOP values, ensuring Europe's independent access to space and removing dependency on an external provider. These orientation values, computed by a team at the Navigation Support Office, will be made freely available around Autumn this year.

The tool estimates and predicts Earth's orientation and rotation up to 90 days in advance using space-based measurements from Global Navigation Satellite Systems (GNSS) and Satellite Laser Ranging among others, an area in which the Office has a great deal of expertise.

"Our algorithm uses atmospheric and weather conditions, seismic activity, the rate at which sea levels are rising and Earth's ice is melting and a host of other variables, all of which interact in complex and hard-to-predict ways," explains Erik Shoenemann, Navigation Engineer at ESOC who leads the project.

"It's easy to take these values for granted, but all spaceflight activity relies on them and a huge amount of work goes into getting them. We are really happy to now have our own source of this data, securing our ability to conduct complex missions in different orbits and to receive the incredible data they send home".

So far, early tests show the new ESA algorithm significantly outperforms those currently in use, marking an important step in ensuring Europe's independent access to space.


Related Links
ESA Navigation Support Office
Space Tourism, Space Transport and Space Exploration News

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



SPACE TRAVEL
Galileo will help Lunar Pathfinder navigate around Moon
Paris (ESA) Mar 19, 2021
ESA's Lunar Pathfinder mission to the Moon will carry an advanced satellite navigation receiver, in order to perform the first ever satnav positioning fix in lunar orbit. This experimental payload marks a preliminary step in an ambitious ESA plan to expand reliable satnav coverage - as well as communication links - to explorers around and ultimately on the Moon during this decade. Due for launch by the end of 2023 into lunar orbit, the public-private Lunar Pathfinder comsat will offer commercial d ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...