...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • SwRI researcher theorizes worlds with underground oceans support, conceal life

SwRI researcher theorizes worlds with underground oceans support, conceal life

Written by  Tuesday, 16 March 2021 06:01
Write a comment
San Antonio TX (SPX) Mar 17, 2021
One of the most profound discoveries in planetary science over the past 25 years is that worlds with oceans beneath layers of rock and ice are common in our solar system. Such worlds include the icy satellites of the giant planets, like Europa, Titan and Enceladus, and distant planets like Pluto. In a report presented at the 52nd annual Lunar and Planetary Science Conference (LPSC 52) this

One of the most profound discoveries in planetary science over the past 25 years is that worlds with oceans beneath layers of rock and ice are common in our solar system. Such worlds include the icy satellites of the giant planets, like Europa, Titan and Enceladus, and distant planets like Pluto.

In a report presented at the 52nd annual Lunar and Planetary Science Conference (LPSC 52) this week, Southwest Research Institute planetary scientist S. Alan Stern writes that the prevalence of interior water ocean worlds (IWOWs) in our solar system suggests they may be prevalent in other star systems as well, vastly expanding the conditions for planetary habitability and biological survival over time.

It has been known for many years that worlds like Earth, with oceans that lie on their surface, must reside within a narrow range of distances from their stars to maintain the temperatures that preserve those oceans. However, IWOWs are found over a much wider range of distances from their stars. This greatly expands the number of habitable worlds likely to exist across the galaxy.

Worlds like Earth, with oceans on their exterior, are also subject to many kinds of threats to life, ranging from asteroid and comet impacts, to stellar flares with dangerous radiation, to nearby supernova explosions and more.

Stern's paper points out that IWOWs are impervious to such threats because their oceans are protected by a roof of ice and rock, typically several to many tens of kilometers thick, that overlie their oceans.

"Interior water ocean worlds are better suited to provide many kinds of environmental stability, and are less likely to suffer threats to life from their own atmosphere, their star, their solar system, and the galaxy, than are worlds like Earth, which have their oceans on the outside," said Stern.

He also points out that the same layer of rock and ice that protects the oceans on IWOWs also conceals life from being detected by virtually all astronomical techniques. If such worlds are the predominant abodes of life in the galaxy and if intelligent life arises in them - both big "ifs," Stern emphasizes - then IWOWs may also help crack the so-called Fermi Paradox. Posed by Nobel Laureate Enrico Fermi in the early 1960s, the Fermi Paradox questions why we don't see obvious evidence of life if it's prevalent across the universe.

"The same protective layer of ice and rock that creates stable environments for life also sequesters that life from easy detection," said Stern.

Research Report: "Some Implications for Both Life and Civilizations Regarding Interior Water Ocean Worlds"


Related Links
Southwest Research Institute
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



EXO WORLDS
Organic materials essential for life on Earth are found for the first time on the surface of an asteroid
London, UK (SPX) Mar 05, 2021
New research from Royal Holloway, has found water and organic matter on the surface of an asteroid sample returned from the inner Solar System. This is the first time that organic materials, which could have provided chemical precursors for the origin of life on Earth, have been found on an asteroid. The single grain sample was returned to Earth from asteroid 'Itokawa' by JAXA's first Hayabusa mission in 2010. The sample shows that water and organic matter that originate from the asteroid itself h ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...