...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Astronomers detect a black hole on the move

Astronomers detect a black hole on the move

Written by  Sunday, 14 March 2021 00:26
Write a comment
Washington DC (SPX) Mar 15, 2021
Scientists have long theorized that supermassive black holes can wander through space--but catching them in the act has proven difficult. Now, researchers at the Center for Astrophysics | Harvard and Smithsonian have identified the clearest case to date of a supermassive black hole in motion. Their results are published in the Astrophysical Journal. "We don't expect the majority of s

Scientists have long theorized that supermassive black holes can wander through space--but catching them in the act has proven difficult.

Now, researchers at the Center for Astrophysics | Harvard and Smithsonian have identified the clearest case to date of a supermassive black hole in motion. Their results are published in the Astrophysical Journal.

"We don't expect the majority of supermassive black holes to be moving; they're usually content to just sit around," says Dominic Pesce, an astronomer at the Center for Astrophysics who led the study.

"They're just so heavy that it's tough to get them going. Consider how much more difficult it is to kick a bowling ball into motion than it is to kick a soccer ball - realizing that in this case, the 'bowling ball' is several million times the mass of our Sun. That's going to require a pretty mighty kick."

Pesce and his collaborators have been working to observe this rare occurrence for the last five years by comparing the velocities of supermassive black holes and galaxies.

"We asked: Are the velocities of the black holes the same as the velocities of the galaxies they reside in?" he explains. "We expect them to have the same velocity. If they don't, that implies the black hole has been disturbed."

For their search, the team initially surveyed 10 distant galaxies and the supermassive black holes at their cores. They specifically studied black holes that contained water within their accretion disks - the spiral structures that spin inward towards the black hole.

As the water orbits around the black hole, it produces a laser-like beam of radio light known as a maser. When studied with a combined network of radio antennas using a technique known as very long baseline interferometry (VLBI), masers can help measure a black hole's velocity very precisely, Pesce says.

The technique helped the team determine that nine of the 10 supermassive black holes were at rest--but one stood out and seemed to be in motion.

Located 230 million light-years away from Earth, the black hole sits at the center of a galaxy named J0437+2456. Its mass is about three million times that of our Sun.

Using follow-up observations with the Arecibo and Gemini Observatories, the team has now confirmed their initial findings. The supermassive black hole is moving with a speed of about 110,000 miles per hour inside the galaxy J0437+2456.

But what's causing the motion is not known. The team suspects there are two possibilities.

"We may be observing the aftermath of two supermassive black holes merging," says Jim Condon, a radio astronomer at the National Radio Astronomy Observatory who was involved in the study. "The result of such a merger can cause the newborn black hole to recoil, and we may be watching it in the act of recoiling or as it settles down again."

But there's another, perhaps even more exciting possibility: the black hole may be part of a binary system.

"Despite every expectation that they really ought to be out there in some abundance, scientists have had a hard time identifying clear examples of binary supermassive black holes," Pesce says. "What we could be seeing in the galaxy J0437+2456 is one of the black holes in such a pair, with the other remaining hidden to our radio observations because of its lack of maser emission."

Further observations, however, will ultimately be needed to pin down the true cause of this supermassive black hole's unusual motion.

Research paper


Related Links
Harvard-Smithsonian Center For Astrophysics
Understanding Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TIME AND SPACE
Establishing the origin of solar-mass black holes and the connection to dark matter
Tokyo, Japan (SPX) Mar 09, 2021
What is the origin of black holes and how is that question connected with another mystery, the nature of dark matter? Dark matter comprises the majority of matter in the Universe, but its nature remains unknown. Multiple gravitational wave detections of merging black holes have been identified within the last few years by the Laser Interferometer Gravitational-Wave Observatory (LIGO), commemorated with the 2017 physics Nobel Prize to Kip Thorne, Barry Barish, and Rainer Weiss. A definitive confirm ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...