...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • Supercomputer turns back cosmic clock

Supercomputer turns back cosmic clock

Written by  Wednesday, 17 February 2021 09:43
Write a comment
Tokyo, Japan (SPX) Feb 17, 2021
Astronomers have tested a method for reconstructing the state of the early Universe by applying it to 4000 simulated universes using the ATERUI II supercomputer at the National Astronomical Observatory of Japan (NAOJ). They found that together with new observations the method can set better constraints on inflation, one of the most enigmatic events in the history of the Universe. The metho

Astronomers have tested a method for reconstructing the state of the early Universe by applying it to 4000 simulated universes using the ATERUI II supercomputer at the National Astronomical Observatory of Japan (NAOJ).

They found that together with new observations the method can set better constraints on inflation, one of the most enigmatic events in the history of the Universe. The method can shorten the observation time required to distinguish between various inflation theories.

Just after the Universe came into existence 13.8 billion years ago, it suddenly increased more than a trillion, trillion times in size, in less than a trillionth of a trillionth of a microsecond; but no one knows how or why.

This sudden "inflation," is one of the most important mysteries in modern astronomy. Inflation should have created primordial density fluctuations which would have affected the distribution of where galaxies developed. Thus, mapping the distribution of galaxies can rule out models for inflation which don't match the observed data.

However, processes other than inflation also impact galaxy distribution, making it difficult to derive information about inflation directly from observations of the large-scale structure of the Universe, the cosmic web comprised of countless galaxies. In particular, the gravitationally driven growth of groups of galaxies can obscure the primordial density fluctuations.

A research team led by Masato Shirasaki, an assistant professor at NAOJ and the Institute of Statistical Mathematics, thought to apply a "reconstruction method" to turn back the clock and remove the gravitational effects from the large-scale structure.

They used ATERUI II, the world's fastest supercomputer dedicated to astronomy simulations, to create 4000 simulated universes and evolve them through gravitationally driven growth. They then applied this method to see how well it reconstructed the starting state of the simulations. The team found that their method can correct for the gravitational effects and improve the constraints on primordial density fluctuations.

"We found that this method is very effective," says Shirasaki. "Using this method, we can verify of the inflation theories with roughly one tenth the amount of data. This method can shorten the required observing time in upcoming galaxy survey missions such as SuMIRe by NAOJ's Subaru Telescope."

These results appeared as Masato Shirasaki et. al. "Constraining Primordial Non-Gaussianity with Post-reconstructed Galaxy Bispectrum in Redshift Space," in Physical Review D on January 4, 2021.

Research paper


Related Links
National Astronomical Observatory of Japan (NAOJ)
Understanding Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TIME AND SPACE
Researchers use LRZ HPC resources to perform largest-ever supersonic turbulence simulation
Berlin, Germany (SPX) Jan 12, 2021
Through the centuries, scientists and non-scientists alike have looked at the night sky and felt excitement, intrigue, and overwhelming mystery while pondering questions about how our universe came to be, and how humanity developed and thrived in this exact place and time. Early astronomers painstakingly studied stars' subtle movements in the night sky to try and determine how our planet moves in relation to other celestial bodies. As technology has increased, so too has our understanding of how the uni ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...