...the who's who,
and the what's what 
of the space industry

Space Careers

news Space News

Search News Archive

Title

Article text

Keyword

  • Home
  • News
  • How do electrons close to Earth reach almost the speed of light?

How do electrons close to Earth reach almost the speed of light?

Written by  Wednesday, 03 February 2021 04:48
Write a comment
Potsdam, Germany (SPX) Feb 04, 2021
A new study has found that electrons can reach ultra-relativistic energies for very special conditions in the magnetosphere when space is devoid of plasma. Recent measurements from NASA's Van Allen Probes spacecraft showed that electrons can reach ultra-relativistic energies flying at almost the speed of light. Hayley Allison, Yuri Shprits and collaborators from the German Research Centre

A new study has found that electrons can reach ultra-relativistic energies for very special conditions in the magnetosphere when space is devoid of plasma. Recent measurements from NASA's Van Allen Probes spacecraft showed that electrons can reach ultra-relativistic energies flying at almost the speed of light.

Hayley Allison, Yuri Shprits and collaborators from the German Research Centre for Geosciences have revealed under which conditions such strong accelerations occur. They had already demonstrated in 2020 that during solar storm plasma waves play a crucial role for that.

However, it was previously unclear why such high electron energies are not achieved in all solar storms. In the journal Science Advances, Allison, Shprits and colleagues now show that extreme depletions of the background plasma density are crucial.

Ultra-relativistic electrons in space
At ultra-relativistic energies, electrons move at almost the speed of light. Then the laws of relativity become most important. The mass of the particles increases by a factor ten, time is slowing down, and distance decreases. With such high energies, charged particles become most dangerous to even the best protected satellites.

As almost no shielding can stop them, their charge can destroy sensitive electronics. Predicting their occurrence - for example, as part of the observations of space weather practised at the GFZ - is therefore very important for modern infrastructure.

To investigate the conditions for the enormous accelerations of the electrons, Allison and Shprits used data from a twin mission, the "Van Allen Probes", which the US space agency NASA had launched in 2012. The aim was to make detailed measurements in the radiation belt, the so-called Van Allen belt, which surrounds the Earth in a donut shape in terrestrial space.

Here - as in the rest of space - a mixture of positively and negatively charged particles forms a so-called plasma. Plasma waves can be understood as fluctuations of the electric and magnetic field, excited by solar storms. They are an important driving force for the acceleration of electrons.

Data analysis with machine learning
During the mission, both solar storms that produced ultra-relativistic electrons and storms without this effect were observed. The density of the background plasma turned out to be a decisive factor for the strong acceleration: electrons with the ultra-relativistic energies were only observed to increase when the plasma density dropped to very low values of only about ten particles per cubic centimetre, while normally such density is five to ten times higher.

Using a numerical model that incorporated such extreme plasma depletion, the authors showed that periods of low density create preferential conditions for the acceleration of electrons - from an initial few hundred thousand to more than seven million electron volts.

To analyse the data from the Van Allen probes, the researchers used machine learning methods, the development of which was funded by the GEO.X network. They enabled the authors to infer the total plasma density from the measured fluctuations of electric and magnetic field.

The crucial role of plasma
"This study shows that electrons in the Earth's radiation belt can be promptly accelerated locally to ultra-relativistic energies, if the conditions of the plasma environment - plasma waves and temporarily low plasma density - are right.

The particles can be regarded as surfing on plasma waves. In regions of extremely low plasma density they can just take a lot of energy from plasma waves. Similar mechanisms may be at work in the magnetospheres of the outer planets such as Jupiter or Saturn and in other astrophysical objects", says Yuri Shprits, head of the GFZ section Space physics and space weather and Professor at University of Potsdam.

"Thus, to reach such extreme energies, a two-stage acceleration process is not needed, as long assumed - first from the outer region of the magnetosphere into the belt and then inside. This also supports our research results from last year," adds Hayley Allison, PostDoc in the Section Space physics and space weather.

Research paper


Related Links
GFZ Geoforschungszentrum Potsdam, Helmholtz Centre
Understanding Time and Space

Tweet

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Monthly Supporter
$5+ Billed Monthly

SpaceDaily Contributor
$5 Billed Once

credit card or paypal



TIME AND SPACE
Nuclear physicist takes a voyage towards a mythical island
Lund, Sweden (SPX) Jan 27, 2021
Theories were introduced as far back as the 1960s about the possible existence of superheavy elements. Their most long-lived atomic nuclei could give rise to a so-called "island of stability" far beyond the element uranium. However, a new study, led by nuclear physicists at Lund University, shows that a 50-year-old nuclear physics manifesto must now be revised. The heaviest element found in nature is uranium, with a nucleus containing 92 protons and 146 neutrons. The nuclei of heavier elements bec ... read more


Read more from original source...

You must login to post a comment.
Loading comment... The comment will be refreshed after 00:00.

Be the first to comment.

Interested in Space?

Hit the buttons below to follow us...